Laserfiche WebLink
-7 <br />TRIGONOMETRIC FORMULtE <br />B B B <br />e U c c a <br />_ - b C �� b C A b C <br />Right Triangle' Oblique Triangles <br />Solution of Right Trianglis <br />_ For Angle A. sin = cos = b ,tan — ¢ ,cot = U ,sec = cosec = e <br />¢ <br />Given Required a z <br />I' '¢,b _A,B,c tanA=—cotB,c= ¢= 1 be=¢ 1•-1-= <br />g a' <br />a,, c _4, B, b a a <br />A, a B, b, c B=90—A, b = ¢ cotA, a= a <br />jj sin A. <br />4' A, b 11, a, c B=90°—A, a= b inn A, c= b <br />cos A. <br />A, c B, ¢, b B=90° "A, a = c sin A; b = e. cos A, <br />Solution of Oblique Triangles <br />Given Required _ a sin B <br />�.A B, a b, e, C 8 sin A ,•O = 180°—(.A -+ B), c =asin C <br />sin A <br />b sin A a sin C <br />'A a b B, c C_ sing= a ,C= 180°—(A f B7,c sink r/ .— <br />• ¢, b, C A, B, c fi-}-B-180 — C, tan <br />c = <br />a. sin C 1` <br />sin A <br />Y <br />a, b, e A B, C s —a+2 °"in zA=alis bbta—c) <br />sinl,D— �a�i� c),C=ISV—(A+B) <br />a, 'b, c Area s=¢+b+C at <br />A, b e Arca b e sin A <br />area = <br />A, B, C, a Area area = <br />a' sin B sin C <br />2 sin A <br />4 <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />5 - e Cos ineOftile vertical angle, Thus: slope distance=319.4ft. <br />Vemc .9959. aHarizontal distance=910.4X.99a�5110% From Table. 9e 5IX, Cos ° 1tN- <br />3 8.09 ft. <br />,1Q Horizontal distance also =Slope distance minus slope - <br />111distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained, Cosine 51 l0'=.9959. 1—.9959=.0041. <br />3L9.4X.0041-1.31, 319,4-1.31=316.09 ft. <br />When the rise isoknown, the horizontal distance is approximately:—tbe slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />slope distance=302.G ft, Horizontal distance =302,6— 14 X 14 =302.&-0,32=302.28 ft. <br />' 2 X 3026 <br />&AUE IN V, B.A. <br />