Laserfiche WebLink
CURVE TABLES. = <br />Publisfied by KELJFFEL 8&` ESSER CO.. <br />IiOW TO USE CURVE TABLES.. � <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius may be found nearly enough, bydividing the Tan. <br />or Ext_ opposite the given Central Angle by the given degree of curve. <br />To:find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan opposite the given Central'Angle by the given Tangent. <br />To find -Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1' curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of. Intersection dor 1: P.=23* 20' to the R: at Station <br />M2+72. <br />Ext. in •Tab. 1 opposite 23° 20' =120.87 <br />120.87-12=10.07. Say a 10' Cui e. <br />Tan. in Tab. I opp. 23' 20' =1183.1 <br />1133.1=10 =118.31. <br />Correction for A: 23' 20' -for a 10' Cur. =0.16 - <br />113.31� 0.15=,118.47=corrected Tangent. <br />(If corrected F_xt. is required find in same way) <br />Ang..23' 20' = 23.33' -10 = 2.3333 = L. C. <br />2' 191'= def. for sta: 542 1. P. =sta. 542 -72 <br />40 492' _ cc " " +50 Tan. = 1 .18.47 <br />701921'-- <br />-B. C.=sta. 541-53.53 . <br />9049"— �,_ 1, « «" +50 L. C.= 2 .33.33 <br />11040== •` . 543-}- . <br />86.86, E. C.=Sta. 543+86.86 <br />100.-53.53=46.47X3'..(def..for 1 ft. of 10' Cur.)=139.41'= <br />i 2' 19 -'=def. for sta. 542. <br />II Def: for 50 ft. =2° 30' for a 10' Curve. <br />Def. for 36.86 ft. =1' 50" for a 10' Curve. <br />_ _ LP.An9.23°20 <br />e°> <br />' 10• Gurve . <br />1 ` `` ' <br />"44- <br />Af <br />ZOO,-, <br />CURVE TABLES. = <br />Publisfied by KELJFFEL 8&` ESSER CO.. <br />IiOW TO USE CURVE TABLES.. � <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius may be found nearly enough, bydividing the Tan. <br />or Ext_ opposite the given Central Angle by the given degree of curve. <br />To:find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan opposite the given Central'Angle by the given Tangent. <br />To find -Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1' curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of. Intersection dor 1: P.=23* 20' to the R: at Station <br />M2+72. <br />Ext. in •Tab. 1 opposite 23° 20' =120.87 <br />120.87-12=10.07. Say a 10' Cui e. <br />Tan. in Tab. I opp. 23' 20' =1183.1 <br />1133.1=10 =118.31. <br />Correction for A: 23' 20' -for a 10' Cur. =0.16 - <br />113.31� 0.15=,118.47=corrected Tangent. <br />(If corrected F_xt. is required find in same way) <br />Ang..23' 20' = 23.33' -10 = 2.3333 = L. C. <br />2' 191'= def. for sta: 542 1. P. =sta. 542 -72 <br />40 492' _ cc " " +50 Tan. = 1 .18.47 <br />701921'-- <br />-B. C.=sta. 541-53.53 . <br />9049"— �,_ 1, « «" +50 L. C.= 2 .33.33 <br />11040== •` . 543-}- . <br />86.86, E. C.=Sta. 543+86.86 <br />100.-53.53=46.47X3'..(def..for 1 ft. of 10' Cur.)=139.41'= <br />i 2' 19 -'=def. for sta. 542. <br />II Def: for 50 ft. =2° 30' for a 10' Curve. <br />Def. for 36.86 ft. =1' 50" for a 10' Curve. <br />_ _ LP.An9.23°20 <br />e°> <br />' 10• Gurve . <br />1 ` `` ' <br />