|
Help
|
About
|
Sign Out
Home
Browse
Search
Pg 81
DaneCounty-Planning
>
Clerical
>
Sam
>
Fricky
>
CDs Other
>
A. W. Ely_2
>
Pg 81
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
3/7/2025 3:53:43 PM
Creation date
3/7/2025 3:53:40 PM
Metadata
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
Page 1 of 1
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
i- <br />\\ <br />R <br />1 • <br />TABLE X <br />CURVE FORMULAE FOR SIMPLE CURVES <br />COMPILED BY J. CALVIN LOCKE, C.E. <br />(1) e = V21ia (2) c = 1/;-2+b2, <br />(3), = 1/2R (R - V (R+b) (R - b)= 1�2R(R - V R2 - b2) <br />(4) c = 2%/ in (2R - m) <br />(5) c = 2R sin .M I (6) e = 2T cos 1/2 I <br />(7) e = R exsee M I <br />(8) a= R tan % I tan Y4I (9) e= T tan y I <br />(10) b = -\/a (2R- a) <br />(11)b= �( 2R X 2R )_�cz 4R2 <br />(12)b=RsinI (13)b=aWt 22I <br />c+4m <br />a z 2 z z 2 <br />e+b <br />(14) R - _ c (15) R - d = <br />2a 2a 21n 8m <br />(16) d =1/R (2R- V (2R+c) (2R -c)= 1/R(2R- 1/4R2-0) <br />2 <br />(17) d -1/2Rm (18) d 2R sin % I (19) m = 2R <br />l }` 2 <br />(20)m = R��\R+ 2 !\R-2> = R=�R2- 4 <br />(21)In = R vers` qI (22) In =.R sin AI tan yI (23) In =Me tan yI <br />(24) a = 2R (25) a = R-1/(R+b) (R -b) = R -1/R2 -b2 <br />(26) a = 2R (sine % I)2 (27) a = R vers I (28) a = R sin I tan y I <br />(29) a = b tan 3,� I (30) a = T sin I (31) T = R tan 3,� I <br />(32) I = LX57295780 (33) R = i X57.295780 <br />(34) L = IR X0.01745329. (35) L = 8d3 e <br />(36) Area Seg. = LR - R2 Sin I _ LR - Rb <br />2 2 <br />6 <br />TABLE XI. -CALCULATION OF EARTHWORK <br />HEIGHT <br />Width <br />1 <br />2 <br />-8 <br />4 <br />5 <br />0 <br />7 <br />8 <br />9 <br />10 <br />11 <br />19 <br />18 <br />14 <br />15 <br />1 <br />.02 <br />-04 <br />.06 <br />.07 <br />.09 <br />.11 <br />.13 <br />.15 <br />.17 <br />.18 <br />.20 <br />.22 <br />.24 <br />.26 <br />.28 <br />2 <br />.04 <br />.07 <br />.11 <br />..f5 <br />.18 <br />.22 <br />.2d <br />.30 <br />.33 <br />.37 <br />.41 <br />.44 <br />.48 <br />.52 <br />.56 <br />8 <br />.00 <br />.11 <br />.17 <br />-22 <br />.28 <br />-33 <br />.39 <br />:44 <br />.50 <br />.56 <br />.61 <br />.67 <br />.72 <br />.78 <br />.83 <br />4 <br />.07 <br />.15 <br />.22 <br />.30 <br />-37 <br />.44 <br />.52 <br />.59 <br />.67 <br />-74,.81 <br />.89 <br />.96 <br />1.04 <br />1.11 <br />8 <br />.09 <br />:19 <br />.28 <br />.37 <br />.46 <br />.56 <br />.65 <br />.74 <br />.83 <br />.93 <br />1.02 <br />1.11 <br />1.20 <br />1.30 <br />1.39 <br />6 <br />.11 <br />.22 <br />.33 <br />.44 <br />.56 <br />.67 <br />.78 <br />.89 <br />1.00 <br />1.11 <br />1.22 <br />1.33 <br />1.44 <br />1.55 <br />1.67 <br />7 <br />,13 <br />:26 <br />.39 <br />.52 <br />.65 <br />.78 <br />.91 <br />1.04 <br />1.16 <br />1.30 <br />1.42 <br />1.55 <br />1.68 <br />1.81 <br />1.94 <br />8 <br />,15 <br />.30 <br />.44 <br />-59 <br />.74 <br />.89 <br />1.04 <br />1.19 <br />1.33 <br />1.48 <br />1.63 <br />1.78 <br />1.92 <br />2.08 <br />2.22 <br />9 <br />.17 <br />.33 <br />.50 <br />.67 <br />.83 <br />1.00 <br />1.17 <br />1.33 <br />1.50 <br />1.67 <br />1.83 <br />2.00 <br />2.17 <br />2.33 <br />2.50 <br />10 <br />.18 <br />.37 <br />.56 <br />.74 <br />.93 <br />1.11 <br />1.30 <br />1.48 <br />1.67 <br />1.85 <br />2.04 <br />2.22 <br />2.41 <br />2.59 <br />2.78 <br />11 <br />.20 <br />.41 <br />.61 <br />.82 <br />1.02 <br />1.22 <br />1.43 <br />1.63 <br />1.8$ <br />2.04 <br />2.24 <br />2.44 <br />2.65 <br />2.85 <br />3.06 <br />19 <br />.22 <br />.44 <br />.67 <br />.89 <br />1. 11 <br />1.33 <br />1.56 <br />1.78 <br />2.00 <br />2.22 <br />2.44 <br />2.67 <br />2.89 <br />3.11 <br />3.33 <br />IS <br />.24 <br />.48 <br />.72 <br />.96 <br />1.20 <br />1.44 <br />1.68 <br />1.92 <br />2.16 <br />2.41 <br />2.65 <br />2.89 <br />3.13 <br />3.37 <br />3.61 <br />14 <br />.26 <br />.52 <br />.78 <br />1.04 <br />1.30 <br />1.55 <br />1- 81 <br />2.08 <br />2.33 <br />2.59 <br />2.85 <br />3. 11 <br />3.37 <br />3.63 <br />3.89 <br />18 <br />.28 <br />.56 <br />.83 <br />1.11 <br />1.39 <br />1.87 <br />1.94 <br />2.22 <br />2.50 <br />2.78 <br />3.00 <br />3.33 <br />3.61 <br />3.89 <br />4.17 <br />16 <br />.30 <br />.59 <br />.89 <br />1.18 <br />1.48 <br />1.78 <br />2-07 <br />2.37 <br />2.67 <br />2.96 <br />3.26 <br />3.56 <br />3.85 <br />4.15 <br />4.44 <br />17 <br />.31 <br />.63 <br />.94 <br />1.26 <br />1.57 <br />1.89 <br />2.20 <br />2.52 <br />2.83 <br />3.15 <br />3.46 <br />3.78 <br />4.09 <br />4:41 <br />4.72 <br />18.33 <br />.67 <br />1.001 <br />33 <br />1.67 <br />2.00 <br />2.33 <br />2.67 <br />3.00 <br />3.33 <br />3.67 <br />4.00 <br />4.33 <br />4.67 <br />5.00 <br />19. <br />.35..70 <br />1.06 <br />1.41 <br />1.76 <br />2.11 <br />2.46 <br />2.82 <br />3.17 <br />3.52 <br />3.87 <br />4.22 <br />4.57 <br />4.92 <br />5.28 <br />20 <br />.37 <br />.74 <br />1.11 <br />1.48 <br />1.85 <br />2.22 <br />2.59 <br />2.96 <br />3.33 <br />3.70 <br />4.07 <br />4-44 <br />4.81 <br />5.18 <br />5.56 <br />21 <br />-39 <br />.78 <br />1.17 <br />1.55 <br />1.94 <br />2.33 <br />2.72 <br />3.11 <br />3.50 <br />3.89 <br />4.28 <br />4.67 <br />5.06 <br />5.44 <br />5.83 <br />29 <br />.41 <br />.81 <br />1.22 <br />1.63 <br />2.04 <br />2.44 <br />2.85 <br />3.26 <br />3.07 <br />4.07 <br />4.48 <br />4.89 <br />5.30 <br />5.70 <br />6.11 <br />23 <br />.43 <br />.85 <br />1.28 <br />1.70 <br />2.13 <br />2.56 <br />2.98 <br />3.41 <br />3.83 <br />4.26 <br />4.68 <br />5.11 <br />5.54 <br />5.96 <br />6.39 <br />24 <br />.44 <br />.89 <br />1.33 <br />1.78 <br />2.22 <br />2.67 <br />3.11 <br />3.56 <br />4.00 <br />4.44 <br />4.89 <br />5.33 <br />5.78 <br />6.22 <br />6.67 <br />46 <br />-'46 <br />.92 <br />1.39 <br />1.85 <br />2.31 <br />2.78 <br />3.24 <br />3.70 <br />4.17 <br />4.63 <br />5.09 <br />5.56 <br />6.02 <br />6.48 <br />6.94 <br />98 <br />.48 <br />.96 <br />1.44 <br />1.92 <br />2.41 <br />2.89 <br />3.37 <br />3.85 <br />4.33 <br />4.82 <br />5-30 <br />5-.78 <br />8.26 <br />6.74 <br />7.24 <br />97 <br />.50 <br />1.00 <br />1.50 <br />2.00 <br />2.50 <br />3.00 <br />3.50 <br />4.00 <br />4.50 <br />5.00 <br />5.50 <br />8.00 <br />6.50 <br />7.00 <br />7.50 <br />28 <br />.52 <br />1.04 <br />1.55 <br />2.07 <br />2.59 <br />3.11 <br />3.63 <br />4.15 <br />4.67 <br />5.18 <br />5.70 <br />8.22 <br />6.74 <br />7.26 <br />7.78 <br />29 <br />-54 <br />1.07 <br />1.61 <br />2. 15 <br />2.68 <br />3.22 <br />3.76 <br />4.30 <br />4- 83 <br />5.37 <br />5.916. <br />44 <br />6.98 <br />7.52 <br />8.06 <br />80 <br />.56 <br />1.11 <br />1.67 <br />2.22 <br />2.78 <br />3.33 <br />3.89 <br />4.44 <br />5.00 <br />5.55 <br />6. 11 <br />6.67 <br />7.22 <br />7.78 <br />8.33 <br />81 <br />.57 <br />1.15 <br />1.72 <br />2.30 <br />2.87 <br />3.44 <br />4.02 <br />4.59 <br />5. 17 <br />5.74 <br />6.32 <br />6.89 <br />7.46 <br />8.04 <br />8.61 <br />84 <br />.59 <br />1.18 <br />1.78 <br />2.37 <br />2.96 <br />3.56 <br />4.15 <br />4.74 <br />5.33 <br />5.92 <br />6.52 <br />7.11 <br />7.70 <br />8.30 <br />8.89 <br />88 <br />.61 <br />1.22 <br />1.83 <br />2.44 <br />3.05 <br />3.67 <br />4.28 <br />4.89 <br />5.50 <br />6.11 <br />6.72 <br />7.33 <br />7.94 <br />8.55 <br />9.17 <br />84 <br />.63 <br />1.26 <br />1-89 <br />2.52 <br />3. l5 <br />3.78 <br />4.40 <br />5.04 <br />5.67 <br />6.29 <br />6.93 <br />7.56 <br />8.18 <br />8.81 <br />9.44 <br />85 <br />.65 <br />1.30 <br />L94 <br />2.59 <br />3.24 <br />3.89 <br />4.53 <br />5.18 <br />5.83 <br />6.48 <br />7.13 <br />7.78 <br />8.42 <br />9.08 <br />9.72 <br />86 <br />.67 <br />1.33 <br />2:00 <br />2.67 <br />3.33 <br />4.00 <br />4.66 <br />5.33 <br />6.00 <br />6.67 <br />7.33 <br />8.00 <br />8.67 <br />9.33 <br />10.00 <br />87 <br />.68 <br />1.37 <br />2.06 <br />2.74 <br />3.42 <br />4.11 <br />4.79 <br />5.48 <br />6.17 <br />6.85 <br />7.54 <br />8.22 <br />8.91 <br />9.59 <br />10.28 <br />88 <br />.70 <br />1.41 <br />2.112. <br />82 <br />3.52 <br />4.22 <br />4.92 <br />5-63 <br />6.33 <br />7.03 <br />7.74 <br />8.44 <br />9. l5 <br />9.85 <br />10.56 <br />89 <br />.72 <br />1.44 <br />2.17 <br />2.89 <br />3.61 <br />4.33 <br />.05 <br />5.78 <br />6.50 <br />7.22 <br />7.95 <br />8.67 <br />9.39 <br />10. 11 <br />10.83 <br />40 <br />.74 <br />1.48 <br />2.22 <br />2.96 <br />3.70 <br />4:44 <br />5.18 <br />5.92 <br />6.67 <br />7.41 <br />8.15 <br />8.89 <br />9.63 <br />10.37 <br />11.11 <br />Table gives cu. yds. in 1 ft. of a triangle of'given width and height. Corrections for <br />tenths of width are one tenth the values found under each height considering the widths <br />from 1 to 9 ae tenths and similarly the corrections for tenths of height are one tenth the <br />figures opposite width considering the heights from I to 9 as tenths. Thus if w=16.2 and <br />h -5.3, cu. yds. =1.48x-.018+.089 =1.587 cu. yds. or practically 160 cu. yds. per 100 ft. <br />If w exceeds 40 ft., use one-half and multiply result by 2, if both w and h are large use <br />one-half of each and multiply result by 4. Any cross-section may be divided into triangles <br />by the following rule. To the triangle of the sum of the outside cuts (or fills) =h, and y§ <br />the roadbed =w, add the triangles formed by taking the distance out to each break in turn <br />( =w's) by the difference between the cute (or fills) on each side of it ( -b's) always sub- <br />tracting the outer from the inner. • <br />
The URL can be used to link to this page
Your browser does not support the video tag.