Laserfiche WebLink
VIII <br />TABLE VI.-CORRFCTIONS FOR SUB -CHORDS AND LONG CI10116S. <br />FOR SUB -CHORDS ADD <br />Excess <br />of arc <br />LONG CHORDS <br />sought. <br />Right triangles. See 0g. (a). <br />a, c <br />A., B, b <br />sin. A- cos. <br />a, b <br />A, B, c <br />tan, A=!, cot. B=-6, c= n' +e'• <br />A, a <br />B, b, c <br />B=90° -A, b=a. cot. A, mein aA° <br />A, b <br />B, a, c <br />B=90° -A, a==b tan. A, <br />D <br />10 <br />20 <br />30 <br />40 <br />50 <br />60, <br />70 <br />80 <br />90 <br />100 ft. <br />D <br />2001 <br />300 <br />400 500 <br />1 <br />40 <br />.00 <br />.00.01 <br />.01 <br />.01 <br />.01 <br />•.01 <br />.01 <br />00 <br />.02 <br />1 <br />199.99 <br />299.97 <br />399.92 499.85 <br />6 <br />.00 <br />.01 <br />.01 <br />.02 <br />.02 <br />.02 <br />.02 <br />.01 <br />.O1 <br />.05 <br />2 <br />199.97 <br />299.88 <br />399.70 499.39 <br />8 <br />.01 <br />.02 <br />.02 <br />.03 <br />.03 <br />.03 <br />.03 <br />.02 <br />.01 <br />.08 <br />3 <br />199.93 <br />299.73 <br />399.32 498.63 <br />10 <br />.01 <br />.02 <br />.03 <br />.04 <br />.05 <br />.05 <br />.05 <br />.04 <br />.02 <br />.13 <br />4 <br />199.88 <br />299.51 <br />398.78 497.57 <br />12 <br />.02 <br />.04 <br />.05 <br />.06 <br />.07 <br />.07 <br />.07 <br />.05 <br />.03 <br />.18 <br />5 <br />199.81 <br />299.24 <br />398.10 496.20 <br />14 <br />.02 <br />.05 <br />.07 <br />.08 <br />.09 <br />.10 <br />.09 <br />.07 <br />.04 <br />.25 <br />8 <br />199.73 <br />298.90 <br />397.26 494.53 <br />16 <br />.03 <br />.06 <br />.09 <br />..11 <br />.12 <br />.12 <br />.12 <br />..09 <br />.05 <br />.33 <br />7 <br />199.63 <br />298.51 <br />396.28 492.57 <br />18 <br />.04 <br />.08 <br />.11 <br />.14 <br />.15 <br />.16 <br />'.15 <br />.12 <br />.07 <br />.41 <br />8 <br />199.51 <br />298.05 <br />395.14 490.31 <br />20 <br />.05 <br />.10 <br />.14 <br />.17 <br />.19 <br />.20 <br />.18 <br />.15 <br />.09 <br />.51 <br />9 <br />199.38 <br />297.54 <br />393.86 487.75 <br />22 <br />.06 <br />.12 <br />.17 <br />.21 <br />.23 <br />.24 <br />.22 <br />.18 <br />.10 <br />.62 <br />10 <br />199.24 <br />296.96 <br />392.42 484.90 <br />24 <br />.07 <br />.14 <br />.20 <br />.25 <br />.28 <br />.28 <br />.26 <br />.21 <br />.12 <br />.74 <br />12 <br />198.90 <br />295.63 <br />389.12 478.34 <br />26 <br />.09 <br />.17 <br />.24 <br />.29 <br />.32 <br />.33 <br />.31 <br />.25 <br />.15 <br />.86 <br />14 <br />198.51 <br />294.06 <br />385.22 470.65 <br />28 <br />10 <br />.19 <br />.27 <br />.34 <br />.37 <br />.38 <br />.36 <br />.29 <br />.17 <br />1.00. <br />16 <br />198.05 <br />292.25 <br />380.76 461.86 <br />30. <br />.11 <br />22 <br />.31 <br />-.39 <br />.43 <br />.44 <br />.41 <br />.33 <br />.19 <br />1.15 <br />18 <br />197.54 <br />290.21 <br />375.74 452.02 <br />32 <br />.13 <br />.25 <br />.36 <br />.44 <br />.49 <br />'.50 <br />.47 <br />.38 <br />.22 <br />1.31 <br />20 <br />196.90 <br />287.94 <br />370.17 441.15 <br />34 <br />.15 <br />.28 <br />.40 <br />.50 <br />.55 <br />.57 <br />.53 <br />.43 <br />.25 <br />1.48 <br />22 <br />196.32 <br />285.44 <br />364.06 429.30 <br />36 ..17 <br />.32 <br />.45 <br />.56 <br />.62 <br />.64 <br />.59 <br />.48 <br />.28 <br />1.66 <br />24 <br />195.63 <br />282.71 <br />357.43 416.53 <br />38 <br />.18 <br />.36 <br />.51 <br />.62 <br />.70 <br />.71 <br />.66 <br />.53 <br />.31 <br />1.86 <br />26 <br />194.87 <br />279.76 <br />350.30 402.89 <br />40 <br />.21 <br />'40 <br />.56 <br />.69 <br />.77 <br />.79 <br />.73 <br />.59 <br />.35 <br />2.06 <br />28 <br />194.06 <br />276.59 <br />342.69 388.42 <br />42 <br />.23 <br />.44 <br />.62 <br />.76 <br />.85 <br />.87 <br />.81 <br />.65 <br />.38 <br />2.28 <br />30 <br />193.18 <br />273.20 <br />334.61 373.20 <br />44 <br />.25 <br />.48 <br />.68 <br />.84 <br />.94 <br />.96 <br />.89 <br />.72 <br />.42 <br />2.50 <br />32 <br />192.25 <br />269.61 <br />326.08 357.28 <br />46 <br />.27 <br />.52 <br />.75 <br />.92 <br />1.02 <br />1.05 <br />.98 <br />.78 <br />.46 <br />2.74 <br />34 <br />191.26 <br />265.81 <br />317.12 340.73 <br />48 <br />.30 <br />.57 <br />.81 <br />1.00 <br />1.12 <br />1.14 <br />1.06 <br />.86 <br />.50 <br />2.99 <br />36 <br />190.21 <br />261.80 <br />307.77 323.61 <br />50 <br />.32 <br />.62 <br />.89 <br />1.09 <br />1.21 <br />1.24 <br />1.15 <br />.93 <br />.55 <br />3.24 <br />38 <br />189.10 <br />257.60 <br />298.03 305.99 <br />52 <br />.35 <br />.67 <br />.96 <br />1.18 <br />1.31 <br />1.35 <br />1.25 <br />1.01 <br />.59 <br />3.52 <br />40 <br />187.94 <br />253.21 <br />287.94 287.94 <br />54 <br />.38 <br />.73 <br />1.04 <br />1.28 <br />1.42 <br />1.46 <br />1.35 <br />1.09 <br />.64 <br />3.80 <br />42 <br />186.72 <br />248.63 <br />277.51 269.54 <br />56 <br />.41 <br />.78 <br />1.12 <br />1.38 <br />1.53 <br />1.57 <br />1.46 <br />1.17 <br />'.69 <br />Cog <br />44 <br />185.44 <br />243.87 <br />266.78 250.85 <br />58 <br />.44 <br />.84 <br />1.20 <br />1.48 <br />1.65 <br />1.69 <br />1.57 <br />1.20 <br />.74 <br />4.40 <br />46 <br />184.10 <br />239.93 <br />255.78 231.95 <br />60 <br />.47 <br />.91 <br />1.29 <br />1.59 <br />1.76 <br />1.81 <br />1.68 <br />1.35 <br />.80 <br />4.72 <br />48 <br />182.71 <br />233.83 <br />244.51 212.92 <br />Noce. -When a chord of less than loo ft. is used the corrections given in the above <br />table should be added to the nominal length of chord to get the length.which should <br />be used in order that the loo ft. points will check with those obtained by using the <br />standard loo ft.�chord. Thus in locating a 140 curve by 25 ft. chords measure 25f.06 <br />for each chord. Long chords are useful in passing obstacles. <br />TABLE VII. -MIDDLE ORDINATES FOR RAILS IN FEET. <br />Deg. <br />LENGTH OF RAILS <br />Deg <br />LENGTH OF RAILS <br />of <br />of <br />Curve <br />32 <br />30 <br />28 <br />26 <br />24 <br />22 <br />20 <br />Curve <br />32 <br />30. <br />28 <br />26 <br />24 <br />22 <br />20 <br />10 <br />.022 <br />.020 <br />.016 <br />.013 <br />.011 <br />.009 <br />.008 <br />16° <br />.356 <br />.313 <br />.273 <br />.236 <br />.200 <br />.170 <br />.139 <br />2 <br />.045 <br />.038 <br />.034 <br />.029 <br />.025 <br />.021 <br />.017 <br />17 <br />.378 <br />.333 <br />.290 <br />.252 <br />.213 <br />.180 <br />.148 <br />3 <br />.067 <br />.058 <br />.051 <br />.044 <br />.037 <br />.031 <br />.026 <br />18 <br />.400 <br />.351 <br />.306 <br />.265 <br />.225 <br />.190 <br />.156 <br />4 <br />.089 <br />.079 <br />.069 <br />.060 <br />.050 <br />.042 <br />.035 <br />19 <br />.423 <br />.371 <br />.324 <br />.280 <br />.238 <br />.201 <br />,.165 <br />5 <br />.112 <br />.099 <br />.086 <br />.074 <br />.063 <br />.053 <br />.044 <br />20 <br />.445 <br />.392 <br />.341 <br />.296 <br />.250 <br />.212 <br />.174 <br />6 <br />.134 <br />.117 <br />.102 <br />.088 <br />.076 <br />.064 <br />.052 <br />21 <br />.466 <br />.410 <br />.357 <br />.309 <br />.262 <br />.222 <br />.182 <br />7 <br />.156 <br />.137 <br />.120 <br />.104 <br />.088 <br />.074 <br />.061 <br />22 <br />.487 <br />.430 <br />.375 <br />.325 <br />.275 <br />.233 <br />.191 <br />8 <br />.179 <br />.158 <br />.137 <br />.119 <br />.100 <br />.085 <br />.070 <br />23 <br />.509 <br />.450 <br />.390 <br />.338 <br />.287 <br />.243 <br />.199 <br />9 <br />.201 <br />.175 <br />.153 <br />.133 <br />.112 <br />.095 <br />.078 <br />24 <br />.531 <br />.469 <br />.408 <br />.354 <br />.299 <br />.253 <br />.208 <br />10 <br />.223 <br />.196 <br />.171 <br />.148 <br />.125 <br />.106 <br />.087 <br />25 <br />.552 <br />.48U.491 <br />.367 <br />.311 <br />.263 <br />.216 <br />11 <br />.245 <br />.216 <br />.188 <br />.163 <br />.139 <br />.117 <br />.096 <br />21 <br />.573 <br />.50.382 <br />.323 <br />.274 <br />.225 <br />12 <br />.268 <br />.236 <br />.206 <br />.179 <br />.151 <br />.128 <br />.105 <br />27 <br />.594 <br />.524.396 <br />.335 <br />.284 <br />.233 <br />13 <br />.290 <br />.254 <br />.222 <br />.192 <br />.163 <br />.138 <br />.113 <br />28 <br />.618 <br />.545.411 <br />.348 <br />.294 <br />.242 <br />14 <br />.312 <br />.275 <br />.239 <br />.207 <br />.175 <br />.148 <br />.122 <br />29 <br />.638 <br />.56.424 <br />.361 <br />.303 <br />.250 <br />15 <br />.334 <br />.295 <br />.257 <br />.223 <br />.188 <br />.159.131 <br />30 <br />.660 <br />.58.438 <br />.374 <br />.313 <br />.259 <br />11 <br />NEW <br />SLOPE REDUCTIONS. <br />When distances are measured on a slope that may be reduced to <br />the equivalent horizontal distance by the following approximate rule. - <br />subtract from the slope distance the square of the rise divided by twice <br />the slope distance. Thus for a slope distance of 250.3 ft. and a rise <br />of 15 ft. correction=151=2X250.3=.45 (by slide rule): or horizontal <br />.distance=250.3-.45=249.85. When vertical angle=V. A. is measured <br />horizontal distance lope' distance -slope distance (1 -Cos. V. A.). <br />Thus for slope distance of 248.7 ft. and V. A. of 4° 20' from Table VIII <br />Cos=.99714 and correction=l-.99714=.00286 per foot or total of .286 X <br />2% (near enough)=.57 and horizontal distance=248.7-.57=248.13 ft. <br />See fig. (a). TRIGONOMETRICAL FORMULAS. <br />sin. A=c B B <br />cos.. Ate° <br />c <br />tan. Awa (a). a a (b) a a. <br />cot. A=! - <br />sec.. A- °P <br />cosec. A= a A b C A b C <br />FORMULA <br />FOR SOLVING TRIANGLES. <br />Given <br />sought. <br />Right triangles. See 0g. (a). <br />a, c <br />A., B, b <br />sin. A- cos. <br />a, b <br />A, B, c <br />tan, A=!, cot. B=-6, c= n' +e'• <br />A, a <br />B, b, c <br />B=90° -A, b=a. cot. A, mein aA° <br />A, b <br />B, a, c <br />B=90° -A, a==b tan. A, <br />A; c <br />B, a, b <br />B=90° -A, . a=te sin. A, • b=c cos. A <br />Given <br />Sought. <br />Oblique triangles. See Ag. (b) ' <br />A, B, a <br />b , <br />b=a sin, e <br />sin. A <br />A,.a, b <br />B <br />sin. B -b sin. A <br />a <br />a, b, C <br />A - B <br />Jan. -Y2 (A -B) -a btan. a+ D (A +B) <br />D <br />c, b, c <br />A <br />If s=112(a+b+c), sin. M A=, J(8 -b) <br />be <br />cos. A= Is (& , tan. I/ A=�(d, <br />sin. A-2 Ds -a) <br />i <br />be <br />A, B, C, a <br />area <br />ea_ a= sia B sin. C <br />2 sin. A <br />A, b, c <br />area <br />area= ---M b c sin. A <br />a, b, c <br />area <br />s ---A (a+b+c), area= s (s-a)(s-b)(s c) <br />