VIII
<br />TABLE VI. -CORRECTIONS FOR SUB -CHORDS AND LONG CHORDS. y
<br />FOR SUB -CHORDS ADD
<br />Excess
<br />of arc
<br />LONG CHORDS
<br />sin. B=�; b= (c+a) (c, --a)
<br />c
<br />tan.
<br />.B,
<br />B=�D°----A,
<br />b=a cot. A, C`einaA°
<br />B; a, c
<br />.B=90° -A,
<br />b
<br />a=b tan, A,
<br />B, a, b
<br />D LO
<br />20
<br />30
<br />40
<br />50
<br />60
<br />70
<br />80
<br />9(
<br />I06 rt.
<br />D
<br />200
<br />300
<br />400
<br />500 '
<br />40
<br />.00
<br />.00
<br />.01
<br />Al
<br />.01
<br />.01
<br />.01.01
<br />'01
<br />.00
<br />.02
<br />f 1
<br />199.99
<br />299.97
<br />399.92
<br />499.85
<br />6
<br />.00
<br />Al
<br />.01
<br />.02
<br />.02
<br />.02
<br />.02
<br />.01
<br />.05
<br />2
<br />199.97
<br />299.88
<br />399.70
<br />499.39
<br />8
<br />.01
<br />.02
<br />.02
<br />.03
<br />.03
<br />.03
<br />.03
<br />.02
<br />'.01
<br />.08
<br />3
<br />199.93
<br />299.73
<br />399.32
<br />498.63
<br />10
<br />.01
<br />.02
<br />.03
<br />.04
<br />.05
<br />.05
<br />.05
<br />AA
<br />.02
<br />.13
<br />4
<br />199.88
<br />299.51
<br />398.78
<br />497.57
<br />12
<br />.02
<br />.04
<br />.05
<br />.06
<br />.07
<br />.07
<br />'.07
<br />.05
<br />.03
<br />.18
<br />5
<br />I99.81
<br />299.24
<br />398.10
<br />496.20
<br />14
<br />02
<br />.05
<br />.07
<br />.08
<br />.09
<br />.:10
<br />.09
<br />.07
<br />AW
<br />.25
<br />6
<br />199.73
<br />298.90397.26
<br />494.53
<br />16.
<br />.03
<br />.06
<br />.09
<br />.11
<br />.12
<br />.12
<br />.12
<br />.09
<br />.05
<br />.33
<br />T
<br />199.63
<br />298.51
<br />396.28
<br />492.57
<br />18
<br />.04
<br />.08
<br />.11
<br />'.14
<br />.15
<br />.16
<br />.15
<br />.12
<br />.07
<br />.41'
<br />8
<br />199.51
<br />298.05
<br />395.14
<br />490.31
<br />20
<br />.05
<br />.10
<br />.14
<br />.17
<br />.19
<br />.20
<br />.18
<br />.15
<br />.09
<br />.51
<br />9
<br />199.38
<br />297.54
<br />393.86
<br />487.75
<br />22
<br />.06
<br />.12
<br />.I7
<br />.21
<br />.23
<br />.24
<br />.22
<br />.18
<br />.10
<br />.62
<br />10:
<br />199.24
<br />296.96
<br />392.42
<br />484,90
<br />24
<br />.07
<br />.14
<br />.20
<br />.25
<br />.28
<br />.28
<br />.26
<br />.21.12
<br />.74
<br />12
<br />198.90
<br />295.63
<br />389.12
<br />478.34
<br />26
<br />-.09
<br />.17
<br />.24
<br />.29
<br />.32
<br />.33
<br />.31
<br />.25
<br />.15
<br />.86
<br />14
<br />198.51
<br />294.06
<br />385.22
<br />470.65
<br />28
<br />:10
<br />.19
<br />.27
<br />.34
<br />.37
<br />.38
<br />.36
<br />.29
<br />.17
<br />1.00
<br />16
<br />198.06
<br />292.25
<br />380.76
<br />461.86
<br />30
<br />.11
<br />22
<br />.31
<br />.39
<br />.43
<br />_
<br />.44
<br />.41
<br />.33
<br />.19
<br />1.15
<br />18
<br />197.54
<br />290.21
<br />375.74
<br />452.02
<br />32
<br />.13
<br />'.25
<br />.36
<br />.44
<br />.49
<br />.50
<br />..47
<br />'.38
<br />'.22
<br />1.31
<br />20
<br />196.90
<br />287.94
<br />370.17
<br />44!.15
<br />34
<br />.15
<br />.28
<br />.40
<br />.50
<br />.55
<br />.57
<br />.53
<br />.43
<br />.25
<br />1.48
<br />22
<br />196.32
<br />285.44:364.06
<br />429.30
<br />36 .:17
<br />,32
<br />.45
<br />.56
<br />.62
<br />.64
<br />.59
<br />.48.
<br />28
<br />1.66
<br />24
<br />195.63
<br />282.71
<br />357.43
<br />416.53
<br />34
<br />.18
<br />.36
<br />.51
<br />.62
<br />.70
<br />:71
<br />.66
<br />.53
<br />.31
<br />1.86.
<br />26
<br />194.87
<br />279.76
<br />350.30
<br />402.89
<br />4 U
<br />.21
<br />'40
<br />.56
<br />.69
<br />.77
<br />_79
<br />.73
<br />49
<br />.35
<br />2.06
<br />28
<br />194.06
<br />275.59
<br />342.69
<br />388.42
<br />42
<br />.23
<br />.44
<br />.62
<br />.76
<br />.85
<br />-.87
<br />.81
<br />.65
<br />.38
<br />2.28
<br />30
<br />193.18
<br />273.20
<br />334.61
<br />373.20
<br />44
<br />.25
<br />.48
<br />.68
<br />.84
<br />.94
<br />.96
<br />.89
<br />.72
<br />.42
<br />.2.50
<br />32
<br />192.25
<br />269.61
<br />326.08
<br />357.28
<br />46
<br />.27
<br />.52
<br />.75
<br />.92
<br />1.02
<br />1:05
<br />.98
<br />.78
<br />.46
<br />2.74
<br />34
<br />191.26
<br />265.81
<br />317.12
<br />340.73
<br />48
<br />.30
<br />.57
<br />.81
<br />1.00
<br />1.12
<br />1.14
<br />1.05
<br />.86
<br />.50
<br />2.99
<br />36
<br />190.21
<br />261.80
<br />307.77
<br />323.61
<br />50
<br />.32
<br />.62
<br />.89
<br />1.09
<br />1.21
<br />1.24.1:15
<br />.93
<br />.55
<br />3.24
<br />38
<br />189.10
<br />257.60
<br />298.03
<br />305.99
<br />52
<br />.35
<br />.67
<br />.96
<br />1.18
<br />1.31
<br />1:35
<br />1.25
<br />LOl
<br />.59
<br />3.52
<br />40
<br />187.94
<br />253.21
<br />287,94
<br />287.94
<br />54
<br />.38
<br />.73
<br />1.04
<br />1.28
<br />1.42
<br />1.46
<br />1.35
<br />1.09
<br />.64
<br />3.80
<br />42
<br />186.72
<br />248.63
<br />277.51
<br />269.54
<br />56
<br />.41
<br />.78
<br />1.12
<br />1.381.53
<br />1.57
<br />1.46
<br />1.17
<br />.69
<br />4.09
<br />44
<br />185.44
<br />243.87256,78
<br />250.$5
<br />58
<br />.44
<br />.84
<br />1.20
<br />1.48
<br />1.65
<br />1.69
<br />1'.57
<br />1.20
<br />.74
<br />4:40
<br />46
<br />184.10
<br />239.93
<br />255.78
<br />231.95
<br />60
<br />.47
<br />.91
<br />1.29
<br />1.59
<br />1.76
<br />1,81
<br />1.68
<br />1.35
<br />.80
<br />4.72.
<br />46
<br />182.71
<br />233.63
<br />244,51212.92
<br />NOTF - When a chord of less than 100 ft. is used the correciious given in the above
<br />table should be added to the nominal length of chord to get the length which should
<br />be used in order that the 100 ft. points will check with those obtained by using the
<br />standard 100 ft. chord. Thus in locating a 14' curve by 25 ft, chords measure 251.06
<br />for each chord. Long chords are useful in passing obstacles.
<br />TABLE VII._MIDDi.F. ORDINATES FOR RAILS IN FEET.
<br />Deg.
<br />LENGTH OF RAM
<br />Deg.LENGTH'
<br />OF RAILS
<br />of
<br />of
<br />j
<br />Curve
<br />32
<br />30
<br />28
<br />26
<br />24
<br />22
<br />20
<br />Curve
<br />32
<br />30
<br />28
<br />126
<br />24
<br />22
<br />20
<br />10
<br />.022
<br />AM
<br />.016
<br />.013
<br />.011
<br />.009
<br />.008
<br />160
<br />.356 .313
<br />.273
<br />.236
<br />.200
<br />.170
<br />.134
<br />2
<br />.045
<br />.038
<br />.034
<br />.029
<br />.025
<br />.021
<br />,017
<br />17
<br />.378 .333.290
<br />.252
<br />.213
<br />.180
<br />.148
<br />3
<br />.067
<br />.058
<br />.051
<br />.044
<br />.037
<br />.031
<br />.026
<br />18
<br />.400 .351
<br />.306
<br />.265
<br />.225
<br />.190
<br />.156
<br />4
<br />.089
<br />.079
<br />.069
<br />.060
<br />.050
<br />.042
<br />.035
<br />19
<br />.423 .371
<br />.324
<br />.280
<br />,238
<br />.201
<br />.165
<br />5
<br />.112
<br />.099
<br />.086.074
<br />.063
<br />.053
<br />.044
<br />20
<br />.445 .392
<br />.341
<br />.296
<br />.250
<br />.212
<br />.174
<br />6
<br />.134
<br />.117
<br />.102
<br />.088
<br />.076
<br />.064
<br />.052
<br />21
<br />.466 .410
<br />.357
<br />.309
<br />.262
<br />.222
<br />.182
<br />7
<br />.156
<br />.137
<br />.120
<br />.104
<br />.088
<br />.074
<br />.061
<br />22
<br />.487 .430
<br />.375
<br />.325
<br />.275
<br />.233
<br />.191
<br />8
<br />.179
<br />.158
<br />.137
<br />.119
<br />.100
<br />.W
<br />.070
<br />23
<br />.509 .450
<br />.390
<br />.338
<br />.287
<br />.243
<br />.199
<br />9
<br />.201
<br />.175
<br />.153.133
<br />,112
<br />.095
<br />.078
<br />24
<br />.531 .469
<br />.408
<br />.354
<br />.299
<br />.253
<br />.208
<br />10
<br />.223
<br />.196
<br />.171
<br />.148
<br />',125
<br />.106
<br />.087
<br />25
<br />.552 .486
<br />.424
<br />.367
<br />.311
<br />.263
<br />.216
<br />11
<br />.245
<br />.216
<br />.188
<br />.163
<br />,139
<br />,117
<br />.096
<br />26
<br />.573 .506
<br />.441
<br />.382
<br />.323
<br />.274
<br />.225
<br />12
<br />.268
<br />.236
<br />.206
<br />.179
<br />,151
<br />.128
<br />.105
<br />2i
<br />594 .524
<br />.457
<br />.396
<br />.335
<br />,284
<br />.233
<br />13
<br />.290
<br />.254
<br />.222
<br />.192
<br />.163
<br />.138
<br />.113
<br />28
<br />.618 .545
<br />.475
<br />.411
<br />.348
<br />.294
<br />.242
<br />14
<br />.312
<br />.275
<br />.239
<br />.207
<br />,175
<br />.146
<br />.122
<br />29
<br />.638 .564
<br />.491
<br />.424
<br />.361
<br />.303
<br />.250
<br />15
<br />.334
<br />.295
<br />.257
<br />.223
<br />,188
<br />.159
<br />.131
<br />30
<br />.660 .583
<br />.508
<br />.438
<br />:374
<br />.313
<br />.259
<br />IX
<br />SLOPE REDUCTIONS.
<br />When distances are measured on a slope that may be reduced to
<br />the equivalent horizontal distance.by the following approximate rule: -
<br />subtract from the slope distance the square of the rise divided by twice
<br />the slope distance.. `thus for a slope distance of 250.3 ft. and a rise
<br />of 15 ft. correction=152_2X250.3=.45 (by slide rule) or horizontal
<br />distance=250.3-.45--249.85.' When vertical angle=V. A. is measured
<br />horizontal distance lope distance --slope distance (1 -Cos. V. A.).
<br />Thus for slope distance of -248.7 ft. and V. A. of 4' 20' from Table VIII
<br />Cos=.99714 and correction=1-.99714=.00286 per foot or total of .286 X
<br />232 (near enough)=:57 and horizontal distance=248;7- -.57 248.13 ft.
<br />TRIGONOMETRICAL FORMULAS. .
<br />g
<br />sin. A=a � B
<br />ccs. A=-!
<br />tan. Amb 2� a Q .
<br />obi a
<br />A--! cat. A a
<br />Bee. Ac CP
<br />cosec. 'A 0 A g C .. b
<br />L•
<br />Given
<br />a,
<br />a, b
<br />A, a
<br />A, b
<br />A
<br />Given
<br />A, B, a
<br />A,.a, b
<br />a,b;C
<br />FORMULA FOR. SOLVING TRIANGLES.
<br />sought.
<br />'
<br />Right triangles. , sea ag. (a).
<br />A, B, b
<br />sin. B=�; b= (c+a) (c, --a)
<br />c
<br />tan.
<br />.B,
<br />B=�D°----A,
<br />b=a cot. A, C`einaA°
<br />B; a, c
<br />.B=90° -A,
<br />b
<br />a=b tan, A,
<br />B, a, b
<br />8=9Q° -A,
<br />a=c ;sin. A, b ---c cos. A
<br />Bought.
<br />Oblique ►dangles. 9ee'6g. (li)
<br />b
<br />a sin. B
<br />b-
<br />B
<br />Sirt. B,=b ata. A
<br />A' - 13
<br />,a
<br />tan. M.( -B)-
<br />a -a tag. }5 (A +B)
<br />a+b .
<br />c, b, 6 A
<br />A, B, C, a area
<br />A, b, c`. area
<br />a, b, c area
<br />If s=M (a+b+r), sin. 'L
<br />V b,L
<br />cgs. A=1(
<br />sin.
<br />be -
<br />a° sin. B sin. C
<br />area -2,1,.A
<br />area=% b c sin. A
<br />s-} (a+b+c), area= s
<br />
|