Laserfiche WebLink
TAaLE.VI:-CORRF_CTIONS FOR SUB -CHORDS AND LONG CIPORDS. <br />.FOR SUB -CHORDS ADD <br />Excess <br />oP'are <br />LONG CHORDS <br />A,. B, b <br />sin. A=a, cos. B=a, b= (c+a) (c a) <br />a; b <br />A, B, c <br />tan. A= -°b, cot. Bib; c-- <br />"A, a <br />B, b; a <br />B=90° -A, b=a cot. A, sin. A* <br />A, b <br />A, c <br />B, a, c <br />B, a, b <br />B=90° -A, a=b tan. A, C=_ -Cos. t' <br />B=90° -A, a=c sin. A, b=c cos. A <br />Given <br />Bought. <br />Oblique triangles. See 8g.' (b) <br />A B, a <br />D <br />10 <br />20 <br />30 <br />40 150 <br />a, b, C <br />60 <br />70 <br />80 <br />90 <br />,IC, ft. <br />D <br />20C <br />300 <br />400 <br />500 <br />40 <br />.00 <br />.00 <br />.01 <br />.01.01 <br />area <br />.01 <br />.01 <br />.01 <br />.00 <br />.02 <br />1 <br />199.99 <br />299.97 <br />399.92 <br />499.85 <br />6 <br />.00 <br />.01 <br />.01 <br />.02 <br />.02 <br />.02 <br />.02 <br />.01 <br />.01 <br />.05 <br />2 <br />199.97 <br />299.88 <br />399.70 <br />499.39 <br />8 <br />.01 <br />.02 <br />.02 <br />.03 <br />.03 <br />.03 <br />.03 <br />.02 <br />.01 <br />.08 <br />3 <br />199.93 <br />299.73 <br />399.32 <br />498.63 <br />10 <br />.01 <br />'.02 <br />-.03 <br />.04 <br />:05 <br />.05 <br />.05 <br />.04 <br />.02 <br />.13 <br />4 <br />199.88 <br />299.51 <br />398.78 <br />497.57 <br />12 <br />:02 <br />.04 <br />.05 <br />.06 <br />.07 <br />.07 <br />.07 <br />.05 <br />.03 <br />.18 <br />'5 <br />199.81 <br />299.24 <br />398.10 <br />496.20 <br />14 <br />.02 <br />.05 <br />.07..08 <br />'.09 <br />'.10 <br />.07 <br />.04 <br />.25 <br />6 <br />199.73 <br />298.90 <br />397.26 <br />494.53 <br />16 <br />.03 <br />.06 <br />.09 <br />.11 <br />.12 <br />.12 <br />..09 <br />.12 <br />.09 <br />.05 <br />.33 <br />7 <br />199.63 <br />298.51 <br />396.28 <br />492.57 <br />18' <br />.04 <br />.08 <br />.11 <br />.14 <br />.15 <br />.16 <br />.15 <br />.12 <br />.07 <br />.41 <br />8 <br />199.51 <br />298.05 <br />395.14 <br />490.31 <br />20 <br />.05 <br />.10 <br />.14 <br />.17 <br />.19 <br />.20 <br />.18 <br />.15 <br />.09 <br />.51 <br />9 <br />19938 <br />297.54 <br />393.86 <br />487.75 <br />22 <br />.06 <br />.12 <br />.23 <br />.24 <br />.22 <br />.18 <br />.10 <br />.62 <br />10 <br />199.24 <br />296.96 <br />392.42 <br />484.90 <br />24 <br />:07 <br />".14 <br />.17 <br />.20 <br />..21 <br />.25 <br />..28 <br />.28 <br />.26 <br />.21 <br />.12 <br />.74 , <br />12 <br />198.90 <br />295.63 <br />389.12 <br />478.34 <br />26 <br />.09 <br />.17 <br />.24 <br />.29 <br />'.32 <br />.33 <br />.31 <br />.25 <br />.15 <br />.86 <br />14 <br />198.51 <br />294.06 <br />385.22 <br />470.65 <br />28 <br />.10 <br />.19 <br />.27 <br />.34 <br />.37 <br />.38 <br />.36 <br />.29 <br />.17 <br />1.00 <br />16 <br />198.05 <br />292.25 <br />380.76 <br />461.86 <br />30 <br />.11 <br />22 <br />.31 <br />:39 <br />'.43 <br />-..44 <br />.41 <br />.33 <br />.19 <br />1.15 <br />18, <br />197.54 <br />290.21 <br />375.74 <br />452.02 <br />32E• <br />.13- <br />.25 <br />.36 <br />:44 <br />..49 <br />r <br />.50 <br />...47 <br />.38 <br />.22 <br />1.31 <br />20 <br />196.90 <br />287.94 <br />370.17 <br />441.15' <br />34. <br />.15 <br />:28 <br />'.40 <br />.50 <br />.55 <br />.57 <br />-.53 <br />,.43 <br />.25 <br />1.48 <br />22 <br />196.32 <br />285.44 <br />364.06 <br />429.30. <br />36 <br />.17 <br />.32 <br />.45 <br />.56 <br />.62' <br />.64 <br />.59 <br />.48 <br />.28 <br />1.66 <br />24 <br />195.63 <br />282.71 <br />357.43 <br />416.53 <br />381 <br />.18 <br />.36 <br />.51 <br />...62 <br />'.70 <br />.71 <br />'.66 <br />-:53 <br />.31 <br />.1.86 <br />26 <br />194.87 <br />279.76 <br />350.30 <br />402.89 <br />40: <br />.21 <br />'40 <br />.56 <br />..69 <br />.77 <br />.79 <br />.73 <br />.59 <br />.35. <br />2.06 <br />28 <br />194.06 <br />276.59 <br />342.69 <br />388.42 <br />42 <br />.23 <br />.44 <br />.62 <br />.76 <br />.85 <br />.87 <br />.81 <br />:65 <br />.38 <br />2.28 <br />30 <br />193.18 <br />273.20 <br />334.61 <br />373.20 <br />44 <br />25 <br />.48 <br />.68 <br />.84 <br />.94 <br />.96 <br />.89 <br />.72 <br />.42 <br />2.50 <br />32 <br />192.25 <br />269.61 <br />326.08 <br />357.28 <br />46. <br />.27 <br />,52 <br />:75 <br />..92 <br />1.02 <br />1.05 <br />.98 <br />.78 <br />.46 <br />2.74, <br />34 <br />191.26 <br />265.81 <br />317.12 <br />340.73 <br />48 <br />30 <br />.57 <br />.81 <br />100 <br />1.12 <br />1.14 <br />1.06 <br />.86 <br />.50 <br />: 2.99 <br />36. <br />190.21 <br />261.80 <br />307.77 <br />323.61 <br />50' <br />.32 <br />.62 <br />:89 <br />1.09 <br />1.21 <br />1.24 <br />1.15 <br />.93 <br />.55 <br />3.24 <br />38 <br />189.10 <br />257.60 <br />298.03 <br />305.99 <br />62 <br />.35 <br />.67 <br />.96 <br />1.18 <br />1.31 <br />1.35 <br />1.25 <br />1.01 <br />.59 <br />3.52 <br />40 <br />187.94 <br />253.21 <br />287.94 <br />287.94 <br />54 <br />.38 <br />`.73 <br />1.04 <br />1:28 <br />1.42 <br />1.46 <br />1.35 <br />1.09 <br />.64 <br />3.80 <br />42 <br />,186.72 <br />248.63 <br />277.51 <br />269.54 <br />56 <br />.41 <br />.78 <br />1.12 <br />1.38 <br />1.53 <br />1.57 <br />1.46 <br />1.17 <br />.69 <br />4.09 <br />44 <br />185.44 <br />243.87 <br />266.78 <br />250.85 <br />58 <br />.44 <br />.84 <br />1.20 <br />1.48 <br />1.65 <br />1.69 <br />1.57 <br />1.20 <br />.74 <br />4.40 <br />46 <br />184.10 <br />239.93 <br />255.78 <br />231.95 <br />60 <br />.47 <br />.91 <br />1.29 <br />1.59 <br />1.76 <br />1.81 <br />1.68 <br />1.35 <br />.80 <br />4.72 <br />48 <br />182.71 <br />233.83 <br />244.51 <br />212.92 <br />Noes. -When a chord of less than 106 ft. is used the corrections given in the above <br />table should be added to the nominal length of chord to get the length which should <br />be used- in order that the 100 ft. points will check with those obtained by using the <br />standard I06 ft. chard. Thus in locating a 140 curve by 25 ft: chords measure 251.08 <br />for each chord. _ Long.chords are useful in passing obstacles; <br />TABLE VII. -MIDDLE ORDINATES FOR RAILS`IN FEET, <br />Deg LENGTH _OF RAILS <br />. <br />Deg <br />LENGTH OF RAILS ­ <br />of <br />of <br />Curve ,32 30 28 26 24 22 20 <br />Curve <br />32, <br />30 <br />28 <br />- 26 <br />24 <br />22 <br />20 <br />10 `.022 <br />.020 <br />.016 .613 .011 <br />.009 <br />.008 <br />'166 <br />.356 .313 <br />.213 <br />:236 <br />.200 <br />.170 <br />.139 <br />2 .045 <br />.038 <br />.034 .029 -.025 <br />.021 <br />:017 <br />17 <br />.378 .333 <br />.290 <br />.252 <br />.213 <br />.180 <br />.148 <br />-3 <br />'.051 .044 .037 <br />.031 <br />.026. <br />18 <br />.400 .351 <br />.306 <br />..265 <br />.225 <br />.190 <br />;156 <br />.067 <br />:089 <br />.058 <br />.079 <br />.0% .060 '•050 <br />.042 <br />.035 <br />19 '• <br />.423 '.371 <br />.324 <br />.280 <br />.238 <br />.201 <br />4 <br />'.165 <br />5 .112 <br />.099 <br />.086 .074 .063 <br />.053 <br />.044 <br />' 20 <br />.445 .392 <br />..341 <br />.296 <br />.250 <br />.212 <br />.174 <br />'6 .134 <br />.117 <br />.102 .088 .076 <br />:064 <br />.052 <br />" 21 <br />.466 .410 <br />•.357 <br />.309 <br />.262 <br />.222 <br />.182 <br />7 .156 <br />.137 <br />.120 .104 .088 <br />.074 <br />.061 <br />'•22 <br />.487 ..430 <br />.375 <br />.325 <br />.275 <br />.233 <br />•191 <br />8 .179 <br />:158 <br />,.137 :119 .100 <br />.085 <br />.070 <br />23 <br />.509 .450 <br />.390 <br />•338 <br />.287 <br />.243 <br />.199 <br />9 .201 <br />.175 <br />.153.133 .112 <br />.095 <br />.078 <br />24 <br />.531 .469 <br />.408 <br />.354 <br />.299 <br />.253 <br />.208 <br />10 ,223 <br />.196 <br />.171 .148 .125 <br />.106 <br />.087 <br />25 <br />552 .486 <br />.424 <br />.367 <br />.311 <br />.263 <br />.216 <br />11 .245 <br />:216 <br />.188 .163 .139 <br />.117 <br />.096 <br />'' 28 <br />.573 .506 <br />.441 <br />.382 <br />.323 <br />.274 <br />.225 <br />12 .'268 <br />.236 <br />.206 .179 .151 <br />.128 <br />.105 <br />27 <br />.594 .524 <br />.457 <br />.396 <br />.335 <br />.284' <br />.233 <br />13 .290 <br />.254 <br />.222 ,192 .163 <br />.136 <br />.113 <br />' 28 <br />.618 .545 <br />.475 <br />.411 <br />.348 <br />.294 <br />.242 <br />14 .312 <br />.275 <br />.239 .207 .175 <br />.148 <br />.122 <br />29. <br />.638 .564 <br />:491 <br />'.424 <br />.361 <br />.303 <br />.250 <br />15 .334 <br />.295 <br />.257 .223 .188 <br />.159 <br />.131. <br />30 <br />.660 .583 <br />.508 <br />.438 <br />.374 <br />.313 <br />.259 <br />IX <br />SLOPE REDUCTIONS. <br />When distances are measured on a .slope .that may be reduced to <br />the equivalent horizontal distance by the following approximate rule: - <br />subtract from the slope distance the square of the rise divided by twice <br />the slope distance. Thus for a slope distance of 250.3 ft. and a rise <br />of 15 ft. correction=151=2X250.3=.45 (by slide rule) or horizontal <br />distance=250.3-.45=249.85. When vertical angle=V. A. is'measured <br />horizontal distance lope distance -slope distance (1 -Cos. V. A.). <br />Thus for slope distance of 248.7 ft. and V. A. of 4° 20' from Table VIII <br />Cos=.99714 and correction=1-.99714=.00286 per foot or total of .286 X <br />2%'(near enough)=.57 and horizontal distance=248.7-.57=248.13 ft. <br />' . see t. (a). TRIGONOMETRICAL FORMULAS. <br />sin. A=a b P <br />cos. A <br />tan. A`a (a) c a c a <br />cot. A= -Q <br />sec. A=b ao <br />cosec. Ac A. b C A b C <br />F'onmuLA FOR SOLVING TRIANGLES. <br />Given <br />Sought. <br />Right triangles. Bee ng. (a). <br />a, c <br />A,. B, b <br />sin. A=a, cos. B=a, b= (c+a) (c a) <br />a; b <br />A, B, c <br />tan. A= -°b, cot. Bib; c-- <br />"A, a <br />B, b; a <br />B=90° -A, b=a cot. A, sin. A* <br />A, b <br />A, c <br />B, a, c <br />B, a, b <br />B=90° -A, a=b tan. A, C=_ -Cos. t' <br />B=90° -A, a=c sin. A, b=c cos. A <br />Given <br />Bought. <br />Oblique triangles. See 8g.' (b) <br />A B, a <br />b <br />b -a sin. B <br />61n. A <br />A,. a, b ` <br />'R <br />sin. B_b em. A <br />a <br />a, b, C <br />A - B <br />tan. Y2 (A -B) -a -b tam b (A +B) <br />C, b, c <br />A <br />If s=% (a+b+c); sin. 34.A=J(s-b) <br />Dc <br />(d -a) <br />cos. A=�a b ,tan. 3/ A=Ve (s -a) , <br />l <br />Q sin. A=2 4(8--a) (3-0 (sem) s <br />ba <br />A, B, C, a <br />area <br />area -a1 alt. B sln. C <br />2 sin. A <br />A, b, c <br />area <br />area=% b c sin. A <br />a, b, c <br />area <br />s=A (a+b+c), <br />