Laserfiche WebLink
DIA' <br />HOW <br />FR <br />Enter on; <br />-of the s <br />stag aco <br />run ve(ti <br />line repr <br />location <br />the dott <br />gives th` <br />from th <br />be add( <br />Oistancl p <br />scale r <br />S. of v( _ <br />is the <br />TRIGONOMETRIC FORMULIE <br />B B B <br />C c c' <br />a a a <br />A b C .A�b C A b C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin = c ; cos = , tan = b , cot = a , sec = 6 , cosec = a . <br />Given Required t <br />a,'b A, B, c tan A = b = cot B, c = a' } b' = a 1 } ar <br />a, c A, B, b sin A = =cos B,b = (c+a) c—a) = c I— <br />A, a B, b, c B = 90°—A, b = a cot A, c =sin A. <br />A, b B, a, c B = 90°—A, a = b tanA, c = b <br />cos A. <br />A, c B, a, b B = 90°—A, a = c sin A, b = c cos A. <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B, a b, c, C b= sin A ' C =180° — (A +B), c = sin A <br />A, a, b B, c, C sin B=b sin A, C =180°—(A }B), c = a sin'C <br />a sin A <br />a, b, C A, B, c A}B=180°-C,tan#(A—B) =(o -b) tangy (A}B) <br />a -{- b <br />a sin C <br />c = sin A- <br />a, b, c A, B, C s= a+2 c, sin J- A = (S— b(S—c)' <br />sin I B= (S -a ((cs—c) C=180°—(A+B) <br />a, b, c Area s=a+2+c, area= s(s—a) (s—b) (s—c) <br />A, b, c Area area= b c sin A <br />2 <br />A, B, C, a Area area = at sin B sin C <br />2sin A <br />REDUCTION TO HORIZONTAL. <br />Horizontal distance -slope distance multiplied by the <br />cosine of the vertical angle. Thus, for a slope distance of <br />400.6 ft. and a vertical argle of 4' 40' -the cosine of lolx• <br />4' 40', taken from a table of natural trigonometrical S Vel• An'�1a C <br />functions, 9967, and horizontal distance -4M.6 x .9%7 <br />=402.27 ft. llori2ontal distance <br />Horizontal distance also -Slope distance minus elope dis- <br />tance times a -cosine of vertical angle). Using the same figures as in the preceding example - <br />Cos.4'40'=.9967.1-.9967=.0033.403:6x.0033-1.33 ft. Horizontal dist.-403.6-1.33-402.27 it. <br />When the rise is (mown, the horizontal distance may be found by the following approximate <br />rule: -the slope distance less the square of the rise divided by twice the slope distance. Thus, <br />for a slope distance of 3722 ft., and a rise of 15 ft. the horizontal distance= <br />372.5- 15x15 =372.5-.30=372.2 ft. <br />2X372.5 <br />EUGENE DIETZGEN CO. MADiM°'" i+ <br />