Laserfiche WebLink
�rt1r- °—, Baa=__L..61�11_:'' <br />TRIGONOMETRIC FORMULAE <br />B B <br />�3 3q `' A A A C <br />�bC b <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />�y, _ cc b a b c o <br />a ( For Angle A; ein = .c ,cos,= c ;tan = b ,cot = a ,sec = b , cosec = a <br />.� Given Required a a <br />(� p•� ` a,b• A;'B,c tanA=b=cotB,c= a2-{- 2=a 1 } 2a <br />a, e. A; B, b sin A = : = cos B, b = N/ (c+a) (c—a = c 1—Q e <br />A,'a• B, b. c- B=90°-�, b = a cotA, o= a <br />, <br />sin A, <br />B, a, c B=9Q—A,a = btan A,c= <br />cos A. <br />e B, a, b B=90* A,a = c sin A, b = c cos A, <br />Solution of. Oblique Triangles <br />Given' Required <br />B a, b c C b` a sin B C= 180°—QA 4 B) a= a sin C <br />B, C ' <br />sin A ' sin A <br />b sin A a sin C <br />B C 180°—(A B), <br />Z <br />A, a,, b 0, <br />,� <br />sin = , = + c = <br />a sinA <br />c( <br />p J _ <br />tea, Z ( <br />a, b, C.; A, B, c <br />( ) 1(+ ) <br />A+B=180°— C, tan I (A—B)= a -b tan i ( B <br />k <br />�4 <br />a sin V <br />sin A <br />r� <br />c <br />-©�% <br />- <br />a;'b, a A, B, C <br />a b <br />+ + 1 c—)� <br />s= ,sinzA=� , <br />S'c' <br />� <br />�.t <br />sin �B= I9 Q�� ),C=180°—(A+B) <br />s1,� <br />J <br />� <br />1 21 �l ` ' <br />(--- <br />_ <br />¢ 1t :) j <br />.A4' a, b, cac <br />Area <br />8= + + ,area <br />o a n- . a <br />—^ <br />__— _�b <br />'Area <br />a sin A <br />area = <br />2 <br />J� <br />Area <br />2 in B sin <br />area = a s <br />2 sin A C - <br />C7 <br />REDUCTION TO HORIZONTAL <br />j �_ ,� <br />3 ''' <br />Horizontal distance—Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Vert. From Table, <br />1 <br />-� �'� <br />/ <br />z Star°e <br />a <br />angle =5° IV. Page IX. cos 51 101= <br />9959. Horizontal distance= X ft <br />,ove ,e <br />p¢ <br />lop <br />Horizontal distance also= Slope distance minus slope <br />distance mi <br />distance times (1—cosine of vertical angle). With the <br />} <br />eS�ing <br />same figures as in the preceding example; the follow- <br />Horizontal distance result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, <br />the horizontal distance is approximately:—tbe slope dist- <br />] <br />ante less the square of the <br />rise divided by twice the slope distance. Thus: rise=14 ft., <br />/ \1'4X14— <br />X <br />slope distance=3026 ft. <br />Horizontal distance=3026— , —3026-0.32=302.28 ft <br />/ 2X302.6 <br />i <br />' NADE IaY. 6. Al <br />