Laserfiche WebLink
►= y �^� � moo. -a � <br />O `fi tr. "- <br />1 <br />o ° -3- Z <br />313, '�s <br />r <br />1 2 be <br />Yin, 09 <br />7210)' <br />�f <br />siri;B= ),C=180°—(A t B) <br />r a+b+c <br />*.b, c Area s= 2 , area <br />area = <br />A, b, e, 'Area b c sin A <br />2 <br />a2 sin B sin C <br />A, B, C, a =Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Vert. angle =5° 1tN. From Table, Page IX. cos 51101 <br />ass <br />49959. Horizontal distance=319.4X.9959=318.09 ft. <br />Horizontal distance also = Slone distance minus slope <br />A. a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 lol=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=3M28 ft. <br />____2X302.6 <br />MADE In.U. a.N <br />11� <br />TRIGONOMETRIC FORMULAE <br />B B B <br />-I <br />a <br />a c a c a <br />d b <br />Right Triangle <br />C A� b C A b C <br />`-- Oblique Triangles <br />Solution of Right Triangles <br />For Angle <br />A. sin = <br />a b a b c a% <br />c. , cos = c , tan= b , cot = a ,'sec -F b , cosec <br />Given ' <br />a, b <br />Required <br />A, B ,c <br />z <br />tan A = b =• cot B, c = a2 +. <br />I ? ta, a <br />d, B, b <br />2 <br />sin A = c = cos B, b = �/ (c+a (e—a) = c 1— c <br />i. A, a <br />B, b, c <br />B=90°—A, b = a cotA, c= <br />sin A. <br />b <br />'A, b <br />B, a, c <br />- B = 90°—A, a = b tan A, c = <br />cos A. . <br />A, c <br />B, a, b <br />B =900—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />x1 Given <br />A, B <br />Required <br />b, c, C <br />a sin B a sin C <br />b= --—(AB),c= sin <br />sinA'C=180, <br />\\ 1 <br />C <br />b sin A a sin C <br />sin B = , C = 180 —(A 1 B) e = <br />a sin A <br />a,. b, C <br />A, B, c <br />(a—b) tan z (A+B) <br />A+B=180o — C, tan (A—B)= <br />a + b <br />a sin C <br />- <br />_ <br />e sin A' <br />?� a, b a <br />'A B, -C <br />a+b+c <br />s=—,sin gA-- , <br />1 2 be <br />Yin, 09 <br />7210)' <br />�f <br />siri;B= ),C=180°—(A t B) <br />r a+b+c <br />*.b, c Area s= 2 , area <br />area = <br />A, b, e, 'Area b c sin A <br />2 <br />a2 sin B sin C <br />A, B, C, a =Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Vert. angle =5° 1tN. From Table, Page IX. cos 51101 <br />ass <br />49959. Horizontal distance=319.4X.9959=318.09 ft. <br />Horizontal distance also = Slone distance minus slope <br />A. a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 lol=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=3M28 ft. <br />____2X302.6 <br />MADE In.U. a.N <br />11� <br />