Laserfiche WebLink
66 . 7' <br />�¢oo.::S to , <br />t b y <br />00 <br />I t 7— ¢ ¢ <br />I} i <br />4.T . <br />TRIGONOMETRIC FORMULtE <br />•� B B <br />c a c a c a <br />1$ b CA b CA b' C <br />b ,Right Triangle � Oblique .Triangles <br />Solution of Right Triangles <br />ll For Angle A. sin = a b a cot= b ,sec = ; cosec = a <br />b b <br />j. <br />c o a a <br />Given <br />a,b <br />Required <br />A,B,c <br />a a <br />tan A=b=cot Ae `sa } a=a 1 } as <br />a, o <br />A, B, b <br />a <br />sin A = o = cos B, b = %/ (c+a) (c ---a) = c � 1— a � <br />A, is <br />B, b, c <br />B = 90°—A, b = a cot A, c = a <br />sin A. <br />A, b <br />B, a, c <br />B = 90`—A, a = b tan A, c = b <br />cos A. <br />A, a <br />B, a, b <br />B = 90°-A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given <br />A, B,a <br />Required <br />b, c, C <br />a sin B , a sin C <br />b= ,C=180—(A+B),c= sin <br />sing sin A <br />A, a, b <br />B, c, C <br />b sin A a sin C <br />sin B = , C = 180°—(A + B) , c = <br />a sin A <br />a, b, C <br />A, B, c <br />o (a—b) tan i (A+B) <br />A+B=180 — C, tan (A—B)= , <br />a + b <br />a sin C ` <br />� <br />a= <br />sin A <br />I(s <br />a, b, a <br />A, B, C- <br />s=a+,sin'-A= <br />�I b(c—a ` <br />s a s—c <br />sin'B= ),C=180°—(A+B) <br />a <br />Y( <br />o <br />a, b, a <br />Area <br />a+b+a <br />s= 2 , area = s(s—a s— (s —a <br />A, b, c <br />Area <br />area = b o s2 A <br />1 <br />as sin B sin C <br />I A, B, C, a <br />Area <br />_ <br />area 2 sin A <br />J REDUCTION <br />TO HORIZONTAL <br />Horizontal distance = Slope distance multiplied by the <br />Thus: distance <br />cosine of the vertical angle. slope =319.4 ft. , <br />Vert. angle =5° 101. From Table, Page IX. cos 51 101= <br />e ais tQ4De <br />H 9959. Horizontal distance=319.4X.9959=31&09 ft. <br />ertical <br />�1e <br />distance times (1—cosine of vertical angle). With Withlthe <br />Horizontal distance <br />same figures as in the preceding example, the follow - <br />ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. <br />Horizontal distance=3026— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />MADE Ui U. 46 N <br />