Laserfiche WebLink
1'7( <br />,. <br />CURVE :TABLES. <br />Published by KEUFFEL &'-ESSER CO.= <br />H_ OW: TO USE °:CURVE TABLES: <br />Table 1: "contains Tangents and Externals to 'a V curve.. Tan.'and <br />Ext. to any other radius may be found nearly enough, bydividing the Tan. <br />or: Ext. opposite the given -Central Angle by the, given degree of curve. <br />To find -Deg. 'of Curve; having the Central Angle and Tangknt: <br />Divide Tan. _opposite the given Central Angle by the given Tangent. <br />To, find Deg. :of Curve, -having the Central Angle nd-External: <br />Divide Ext: opposite the given.Cential Ankle by 66 -given` External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any'angle by _Table T.: Tan. <br />or Ext. of twice the given angle divided -by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />Wanted a Curve with an Ext. of about 12 ft. Angle: <br />of Intersection or I. P. =32 ' <br />20' to the R. at ,Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />12.0.87-- 12 =10.07.' ' Say a 10P Curve. <br />Tan. in Tab. I opp. 23° 20'= 1183.1 <br />1183.1­00=11831.'-- <br />Correction <br />183:1=10=118.31.':Correction for A.-23° 20' for a IOP Cur. =0.16 <br />118.31 +0.16 -118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) ' <br />Ang.23°20',=23.33 =10=2.3333=L.C. <br />20 191'=def. for sta. " 542 I. P. =sta. .542+72 <br />40 491' +50 .Tan. 1 .18.47 <br />70 191,= « « " .. 543 <br />9" 49 J, - B. C. = sta..:. 541+53.63 <br />110 40' " u " -} + L. C. = 2 .33.33 <br />= —' .543 + - . <br />86.86 E. C. =Sta. . ; ' -543+86.86 <br />100-53.53=46.47XX(def. for l ft. of 10° Cur.) =139.41'= <br />2° 191 =def. for sta. 542. <br />-Def for 50 ft. -=2' 30' for -a 100 -Curve: - - - - - <br />Def. for 36.86 ft. =1° 501' for a 10' Curve. <br />67_:3 <br />V_ <br />43-21-1— <br />7, s <br />/D <br />4- <br />11-5- <br />77- <br />1-0. <br />z. Ce <br />/41 1 <br />of <br />mei— <br />Zo5'.34 <br />o <br />-ted <br />-�S" <br />is:z <br />17 7,r <br />4' -5 <br />a <br />175.7' <br />1 8 4- <br />- <br />-3 5- <br />Aa <br />✓ <br />176 <br />—2 <br />-7L3-5-7 <br />/z. z <br />✓ <br />l <br />iv -/57 <br />43-/1 <br />9 <br />171-3 <br />77 <br />J 11.1 <br />�Z-3a <br />i'- S_ <br />6.7 <br />1,.3 <br />g o. <br />4 Gd - p 6 <br />24 .2, <br />✓ <br />;� r� :a <br />p E�� �� <br />Irl-'�� <br />z.�. 0 <br />85.. <br />30 <br />,. <br />CURVE :TABLES. <br />Published by KEUFFEL &'-ESSER CO.= <br />H_ OW: TO USE °:CURVE TABLES: <br />Table 1: "contains Tangents and Externals to 'a V curve.. Tan.'and <br />Ext. to any other radius may be found nearly enough, bydividing the Tan. <br />or: Ext. opposite the given -Central Angle by the, given degree of curve. <br />To find -Deg. 'of Curve; having the Central Angle and Tangknt: <br />Divide Tan. _opposite the given Central Angle by the given Tangent. <br />To, find Deg. :of Curve, -having the Central Angle nd-External: <br />Divide Ext: opposite the given.Cential Ankle by 66 -given` External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any'angle by _Table T.: Tan. <br />or Ext. of twice the given angle divided -by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />Wanted a Curve with an Ext. of about 12 ft. Angle: <br />of Intersection or I. P. =32 ' <br />20' to the R. at ,Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />12.0.87-- 12 =10.07.' ' Say a 10P Curve. <br />Tan. in Tab. I opp. 23° 20'= 1183.1 <br />1183.1­00=11831.'-- <br />Correction <br />183:1=10=118.31.':Correction for A.-23° 20' for a IOP Cur. =0.16 <br />118.31 +0.16 -118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) ' <br />Ang.23°20',=23.33 =10=2.3333=L.C. <br />20 191'=def. for sta. " 542 I. P. =sta. .542+72 <br />40 491' +50 .Tan. 1 .18.47 <br />70 191,= « « " .. 543 <br />9" 49 J, - B. C. = sta..:. 541+53.63 <br />110 40' " u " -} + L. C. = 2 .33.33 <br />= —' .543 + - . <br />86.86 E. C. =Sta. . ; ' -543+86.86 <br />100-53.53=46.47XX(def. for l ft. of 10° Cur.) =139.41'= <br />2° 191 =def. for sta. 542. <br />-Def for 50 ft. -=2' 30' for -a 100 -Curve: - - - - - <br />Def. for 36.86 ft. =1° 501' for a 10' Curve. <br />