Laserfiche WebLink
00 <br />0 o <br />O <br />Zp- <br />y !-V <br />\j \ <br />A3 Q\ r <br />TRIGONOMETRIC FORMULX <br />B B B <br />a <br />b C� b CA b C <br />i <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin= o , cos- a , tan = b , cot = a , sec = b , cosec - <br />Given Required <br />gbA,B,c tan A=b=cotB,a= . as {s=a 41+T <br />a, G A, B, b sinA = a =cosB b= c a a9 <br />02 <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />A b B, a, 'c B = 90°—A, a = b tan A, e = b <br />' cos A. <br />A, c B, a„ b B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />(liven Required a sin B <br />A, B,a b, c, C b= ,C=180°—(A } B),c=a.sinC , <br />BIII A � BlII A <br />b sin A a sin C <br />a ti. <br />A,, a, b B, c, C • sin B = , C = 180°—(A + B) , c = sin A <br />a,: b, C A, B, c A+B=180°—C,(tan $(A—B)—(a—b) a + bA+B)' +; f <br />c= <br />a sin C <br />sin A <br />a, b, c A, B, C s=as+,sinA=`I(a .b(c—c <br />sin #B=1TC=180°—(A+B) <br />ac <br />s, b, o Area s— a+b+c2 ,area = 1 a(a—a) (a— s—c <br />A, b, c Areab e sin A <br />area = 2 <br />A, B, C, a Area arca = a$ sin B sin C s <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />a�sI 1c, d Vert. angle =51 M From Table, Page IX. cos 50 10'= <br />9959. "Horizontal distance=319.4X.9959=318.09 ft. 1i <br />ca�oPe n�,1e Horizontal distance also =Slope distance minus slope <br />P a distance times (1—cosine of vertical angle). With the <br />4e same figures as in the preceding example, the follow. <br />Horizontal distanceing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />,,'319.4X.0041=1.31-319.4-1,31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302:6 ft. Horizontal distance=3026— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 3026 <br />' woEwu.a.a <br />h. <br />... <br />,'A <br />G <br />Ar <br />S:SO <br />'6138 <br />�k <br />_ 1�3q,y <br />(A =a <br />)i <br />I ij h <br />/. <br />+ <br />II, <br />X./e/!7 <br />/ <br />114y 2. _-� rz�� -Q) <br />�- <br />/83Y.Z <br />. <br />Lr— <br />P <br />S <br />7 0 <br />+0 <br />- <br />X310 /7S LL �..Z <br />00 <br />0 o <br />O <br />Zp- <br />y !-V <br />\j \ <br />A3 Q\ r <br />TRIGONOMETRIC FORMULX <br />B B B <br />a <br />b C� b CA b C <br />i <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin= o , cos- a , tan = b , cot = a , sec = b , cosec - <br />Given Required <br />gbA,B,c tan A=b=cotB,a= . as {s=a 41+T <br />a, G A, B, b sinA = a =cosB b= c a a9 <br />02 <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />A b B, a, 'c B = 90°—A, a = b tan A, e = b <br />' cos A. <br />A, c B, a„ b B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />(liven Required a sin B <br />A, B,a b, c, C b= ,C=180°—(A } B),c=a.sinC , <br />BIII A � BlII A <br />b sin A a sin C <br />a ti. <br />A,, a, b B, c, C • sin B = , C = 180°—(A + B) , c = sin A <br />a,: b, C A, B, c A+B=180°—C,(tan $(A—B)—(a—b) a + bA+B)' +; f <br />c= <br />a sin C <br />sin A <br />a, b, c A, B, C s=as+,sinA=`I(a .b(c—c <br />sin #B=1TC=180°—(A+B) <br />ac <br />s, b, o Area s— a+b+c2 ,area = 1 a(a—a) (a— s—c <br />A, b, c Areab e sin A <br />area = 2 <br />A, B, C, a Area arca = a$ sin B sin C s <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />a�sI 1c, d Vert. angle =51 M From Table, Page IX. cos 50 10'= <br />9959. "Horizontal distance=319.4X.9959=318.09 ft. 1i <br />ca�oPe n�,1e Horizontal distance also =Slope distance minus slope <br />P a distance times (1—cosine of vertical angle). With the <br />4e same figures as in the preceding example, the follow. <br />Horizontal distanceing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />,,'319.4X.0041=1.31-319.4-1,31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302:6 ft. Horizontal distance=3026— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 3026 <br />' woEwu.a.a <br />