Laserfiche WebLink
3 7 7 8 °` _ A, B, C, a Area area = as sin B sin C <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft, <br />e a�sti9�co d .99959. Holr Horizontal distance 3Table. <br />9 4X 9 9e 315.09 ft.IX. cos 5° ilY <br />e,1op Angle 4 Horizontal distance also=Slone distance minus slope <br />a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=3026 ft. Horizontal distance=3026— 14 X 14 ==6-0.32=30129% <br />2X3026 <br />IME in U. a. <br />TRIGONOMETRIC FORMULYR <br />B B <br />b�i <br />z <br />a c a °. a <br />9i1 i'."334.2/ <br />A <br />I,r <br />/ Z '. - _ <br />_, <br />f <br />Right Triangle Oblique Triangles <br />W <br />i _ j •� �/(� <br />l� G <br />-,., Solution of Right Triangles <br />a b a b a a <br />! <br />_ <br />tan= T, cot <br />For Angle A. sin = coe = ,cot = ,sec = b , cosec = <br />�t <br />/ <br />7'��O <br />_ � - <br />Given <br />a,b <br />Required <br />A,B,a <br />e-, a a a <br />a a <br />tanA=b=cotB,c= a2+.'=a 1+aq <br />3, <br />a <br />A, B, b <br />sin A = eos B, b = c a c—a = c I—;—, <br />f <br />A, a <br />B, b, c <br />a <br />B=90°—A, b = a cotA, c= sin A. <br />�o <br />7- <br />A, b <br />B, a, c <br />B=90* —A, a . = b tan A, <br />/ <br />cos A. <br />D <br />'2 <br />A, c <br />B, a, b <br />B = 90°—A, a = c sin A, b = a cos A, <br />Solution of Oblique Triangles <br />Given <br />A B,a <br />Required <br />b c, C <br />a sin B a sin C <br />b= ,C=180°—(A+B),c= <br />sin A sin A <br />A, a; b l <br />B, c, C <br />b sin A ° a sin C <br />sin B = , C = 180 —(A + B) , c = <br />A <br />a, b,sin <br />C <br />d., B, a <br />A+B=180°— C, tan ; (A—B)= (a—b) tan a (A+B) <br />` - <br />6{zo <br />12 <br />jjj <br />r <br />- <br />f <br />a + b <br />_asin C <br />c sin A <br />f, <br />- <br />! <br />k <br />0. b, a <br />A, B, C <br />a= '+b+" 'A <br />b(c—c <br />/0 <br />/oqs <br />J <br />sin4,B=`Is`ac ,C=180°—(A+B) <br />38-a <br />b, a <br />Area <br />s _ 2 ,area = a(s—a a— s—c - <br />ZZ / 94 <br />A, b, c <br />Area <br />bosinA <br />area = <br />2 <br />3 7 7 8 °` _ A, B, C, a Area area = as sin B sin C <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft, <br />e a�sti9�co d .99959. Holr Horizontal distance 3Table. <br />9 4X 9 9e 315.09 ft.IX. cos 5° ilY <br />e,1op Angle 4 Horizontal distance also=Slone distance minus slope <br />a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=3026 ft. Horizontal distance=3026— 14 X 14 ==6-0.32=30129% <br />2X3026 <br />IME in U. a. <br />