Laserfiche WebLink
VM <br />TAsim It- Radii, Ordinates and'Deflections. Chord=100 ft. <br />The middle ordinate in inches for any cord 0 .length (C) is equal to .0012 C' <br />multiplied by the middle ordinate; taken from the above table. Thus, iP it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordI te:shodld' <br />be .0012X900X2:183 or 2.36 inches.: <br />TABLE III. 'Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius . <br />Mid. • <br />Ord.. <br />Tan. ' <br />Diet. <br />Def. <br />Dist." <br />Def' <br />for <br />1 Ft. <br />Deg.' <br />Radius <br />Mid. <br />Ord: <br />Tan <br />Dist. <br />Def. <br />Dist. <br />Def. <br />foi <br />1 Ft. <br />51' . <br />t. <br />ft. <br />ft. <br />ft. <br />/ <br />101. 15 <br />ft.• <br />ft. <br />ft. <br />ft. <br />, <br />0°:10' <br />34377.: <br />.036 <br />.145 <br />1 :291 <br />0.05 <br />V <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189:. <br />.073 <br />.291 <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459:`• <br />.109 <br />.436 <br />= .873 <br />0.15 <br />.30-- <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />8594.4 <br />.145 <br />.582 <br />'1.164 <br />0:20 <br />40; <br />747.9 <br />1.673- <br />6.685 <br />13.37 <br />2.30 <br />50 <br />6875.5 <br />.182 <br />.727, <br />A.454 <br />0.25, <br />8 <br />716.8 <br />1.746. <br />6.976 <br />13.95 <br />2.40 <br />I. <br />5729.6 <br />,.218 <br />.873 <br />-1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7:26614.53 <br />22' <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />130 <br />674.7 <br />1.855 <br />7.411 <br />14.82 <br />2.55 <br />20. <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40. <br />'40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />r. 30 <br />3819.8 <br />.327 <br />1.309 <br />'2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />' 3125.4 <br />.400 <br />1.600 <br />3.200 <br />6.55 <br />;30' <br />603.8 <br />2.074 <br />8.281.16.56 <br />22' <br />2.85 <br />2 ': <br />2864.9 <br />_ .436 <br />1.745 <br />:3.490 <br />0.60 <br />'40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />.'10• <br />2644.6 <br />;.473 <br />1.891 <br />:3.781'0.65 <br />6o° <br />10 - <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />- 20 <br />'2455.7 <br />.509 <br />2.036 <br />`4'.072 <br />0.70 <br />130- <br />546.4 <br />2.292 <br />9:150 <br />18130 <br />3.15 <br />30 <br />2292.0 <br />:545 <br />2.181 <br />4.363 <br />0.75 <br />11' <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40,. <br />2148.8 <br />.582 <br />2:327 <br />,4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10:02 '20.04 <br />3.45 <br />50 <br />° 2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85- <br />12 , <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />6 ..1910.1 <br />•.655 <br />2.618 <br />�5:235 <br />0.90 <br />•30' <br />459.3 <br />2.730 <br />10:89 <br />21.77' <br />3.75 <br />10 <br />1809:6 <br />•.691 <br />2.763 <br />5.526 <br />0.95 <br />43 ; <br />441.7 <br />2.839 <br />11.32 '22.64 <br />3.90 <br />20 <br />.1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />- 30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />80 <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05. <br />14 <br />410.3 <br />3.058 <br />12.18.: <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />'30 <br />396.2 <br />3.168 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />6.689 <br />1.16, <br />15` <br />383.1 <br />3.277. <br />13.05 <br />4.50 <br />a'- <br />1432.7 <br />'.873 <br />3:490 <br />6.980 <br />1.20 <br />• 30 <br />370.8 <br />3.387. <br />.26.11 <br />13:49''26.97 <br />4.65 <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />16' : <br />359.3 <br />3.496 <br />13'.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />..945 <br />3.718 <br />7.561 <br />1.30. <br />.30 <br />348.5 <br />3.606 <br />14'.35, <br />28.70 <br />4.95 <br />30=.1273.6 <br />.982 <br />3.926 <br />7.852 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1'1.018 <br />4.071 <br />8:143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15:64 <br />31.29 <br />5.40 <br />'.50 <br />1185.8 <br />1.055 <br />'4.217 <br />'8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51- <br />33'.01 <br />5.70 <br />S <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34-.73 <br />6.00. <br />10.:1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />•21' <br />274.4 <br />4.594 <br />18.22 <br />36.44 <br />6.30 <br />'20 <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />22 <br />262.0 <br />4.814 <br />19.08 <br />39.16 <br />6.60 <br />,- 30 <br />1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1.65. <br />`23 <br />250.8 <br />5.036 <br />19.94. <br />39.87 <br />6.90 <br />:40' <br />1011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70' <br />•24. <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />982.6 <br />1:273 <br />5.088 <br />10.18 <br />1.75, <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />6' - <br />955:4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26. <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7.80 <br />10929.8 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />271 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28; <br />206.7-6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />;881.911.418 <br />5.669 <br />11.34 <br />1.95 <br />29, <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40, <br />:859.911.455 <br />5.814 <br />11.63 <br />2.00 <br />30; <br />1193.216.-583M.88 <br />51'.76 <br />9.00 <br />The middle ordinate in inches for any cord 0 .length (C) is equal to .0012 C' <br />multiplied by the middle ordinate; taken from the above table. Thus, iP it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordI te:shodld' <br />be .0012X900X2:183 or 2.36 inches.: <br />TABLE III. 'Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />SU <br />35 sub -chord =sin of } de[. angle ' <br />R <br />Length <br />of arc <br />for 100 ft. <br />sin.1 def. ang. <br />12.5. Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />3°°..- <br />...193; 18_ <br />I° <br />51' . <br />2°°17 2° <br />.8500 <br />58, <br />3° <br />43' <br />101. 15 <br />320 <br />181.39 <br />1° <br />89' <br />2' <br />25' <br />30 <br />10' <br />30 <br />58' <br />101.33 <br />34° <br />171.01 <br />20 <br />06' <br />2° <br />33'3° <br />.7167 <br />21' <br />Q.° <br />12' <br />101.48 <br />360 <br />:i61.8o <br />20 <br />13' <br />2° <br />41. <br />30 <br />33' <br />40 <br />26' <br />Iol.66 <br />380 <br />153.58. <br />2020, <br />25 <br />2° <br />49' <br />3° <br />4.4' <br />4° <br />40'. <br />101.85 . <br />40°' <br />146.19 <br />2° <br />27' <br />2057' <br />.4333 <br />.3° <br />55' <br />4° <br />54' <br />102.o6 <br />42' <br />139.52 <br />2° <br />34'; <br />30 <br />65' <br />40 <br />07' <br />50 <br />08' <br />io2:z9 <br />440 <br />3 <br />1347 <br />2° <br />41, <br />3° <br />13' <br />4° <br />18' <br />50 <br />22' <br />102.53 <br />460 <br />127.97 <br />2° <br />48'. <br />3° <br />21' <br />4° <br />291_ <br />50 <br />36' <br />102.76 <br />48° <br />:122.92 <br />20 <br />55'. <br />30 <br />29' <br />40 <br />40' <br />5°,50' <br />.5000 <br />103:°0 <br />- 5o°: <br />118.31 <br />3° <br />oz' <br />3°.38' <br />' 4° <br />51 <br />6004 <br />1 <br />103.24. <br />52°< <br />114.0.6 .. <br />3° <br />09' <br />30 <br />46, <br />5° <br />O2' <br />6' <br />17, <br />103.54 <br />- 54°' <br />13' <br />IIO.II <br />30 <br />W. <br />30 <br />54' <br />S° <br />6° <br />3i' <br />"103.84 <br />560 <br />106.50 <br />30 <br />22' <br />40 <br />02' <br />5° <br />23' <br />6°.44'' <br />104.14 <br />580 <br />103.14 <br />30 <br />29' <br />4° <br />10' <br />5° <br />34' <br />60 <br />57' <br />104.43 <br />6o° <br />100.00 <br />30 <br />35 <br />4° <br />18` <br />5° <br />44' <br />70 <br />11' <br />104.72 <br />xx <br />CURVE FORMULAS <br />T =` R tan j "I chord' <br />R=Tcot.�I <br />_ 50 tan }.I . Chord def. <br />T Sin. J 1) R- b0 R <br />Sin. D = 50 Sin., D. No. chords I <br />R. 'E = R ex: sec JJ D <br />Sin. J D =`5° tT ' I E =T tan I I Tan. def. _ }chord def. <br />The square of any distance, divided'by.twice the radius, will equal <br />the distance from tangent tocurve, very nearly: <br />To find angle for a given distance and deflection. <br />Rule 1. Multiply the given distance by -01745 (def. for I° for i ft. <br />see Table II.); and divide given deflection by the product. <br />Rule 2: Multiply given deflection:by, 57.3, and divide the product by <br />the ,given distance: : .. . <br />To find •deflection for a given• angle and distance. Multiply the angle <br />by .01745, and -the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. , Square the altitude, divide by twice the <br />base. Add quotient to base'for hypotenuse. <br />`Given Base *loo, Alt. 10.102._200=.5•• 100+-5=100.5 hyp• <br />Given Hyp, loo, Alt. 25:252=200=3.125. 100-3.125=96.875=Base. <br />Error in'fii•st example, .002; In last, .045•' <br />To find' Tons of • Rail in one mile of track: multiply weight per yard' <br />by 'i i, and divide by 7. <br />Litvti 1md._ The correction jor curvature and refraction, in feet <br />and decimals of feet is equal to 0.57449, where d.is the.distance in miles. <br />Thecorrection for vurvature alone is closely,''Id.2. The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If dk, de; da, etc. are, the discrepancies of various <br />iesults.from the mean; and 1f 7-da=the sum of the squares of these diftor- <br />ences and n=the numbei of observations, then the probable error of the. <br />mean= <br />j=-0.6745 • n (n 1) _ <br />SOLAR'EPHEMERIS. Attention -is called to the Solar Ephemeris for- <br />the current year, published by Keuffel & Esser Co., and furnished free of <br />charge upon request, which -is 34x5] in., with about 90 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar- attachments; directions and tables'for determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural and Logarithmic Functions; <br />and Logarithms of Numbers. <br />TABLE IV. - Minutes <br />TASLD <br />in Decimals of a Degree. <br />1' <br />-.0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />31' <br />.5167 <br />41' <br />.6833 <br />51' <br />.8500 <br />2 <br />.0333 <br />12' <br />2000 <br />22 ' <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />a - <br />.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />'24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000 <br />16 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />.9333 <br />7 <br />.1167 <br />Y7. <br />.2833 <br />27' <br />..4500 <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.9500 <br />8' <br />.1333 <br />"18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />b8 <br />.9667 <br />9 <br />.1500 <br />.19 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />9833 <br />10. <br />.1667 <br />20 <br />'.3333 <br />30 <br />.5000 <br />40 <br />.6667 <br />50 <br />.8333 <br />60 <br />1.0000 <br />TASLD <br />V. -Inches in Decimals of a Foot. <br />1-16 3-32 <br />',4 <br />3-16 <br />b-16 <br />% <br />M <br />.0052_._-•0078 <br />..0104. <br />-0156- <br />.0208 <br />.0260 <br />..0313 <br />.0417 .C521 <br />.0625 <br />.07 <br />1 2 <br />3 <br />4 <br />b <br />6 <br />7 <br />8 9 <br />10 <br />11 <br />0833 .1667 <br />.25,00 <br />.3333 <br />.4167 <br />.5000 <br />.b833 <br />_.8667 .750D <br />.8333 <br />.9167 <br />