Laserfiche WebLink
400¢9 TRIGONOMETRIC FORMULF, t <br />B B <br />o •5 9o4 -z3 2�� � <br />{o(° 1 8 Z9G�, c^ a a a a <br />b33 Ul <br />yC A C <br />b C A b <br />3 ,� • �r tRight Triangle Oblique• Triangles " <br />Solution of Right Triangles <br />S g a b a b c « c <br />R , • Z Wit_ 6 For Angle A. sin = ,cos = ,tan = ,cot = —,sec= cosec^' �- <br />S <br />p q <br />"(iven Required <br />� <br />a-a�2 <br />, , ,3303 <br />y <br />v a, a A, _B, b sin A. = C <br />� cos B, b = �/ (c+a) (c—a) = c 1=•a y <br />S' t A "ia" B, b, c B=90° -A b= acotA,c= a s <br />sin A. <br />Z a <br />A b B, a, c B= 90°—A a= b tan A c= <br />t7 ° 1� 1,420 3 _ � _ - , , _ cos A. <br />0 (p 146 �; (% A, c B, a, b I B = 90°—A, a = c sin A, b = c cos A, <br />Z ) Jy.�y'�6 3..�5 Solution of Oblique Triangles <br />13 l p Given Required a sin B a sin C <br />_ A �B a b, c, C b = C = 180°—(A -I- B), a = <br />! 9 ? , , sin A ' sin A <br />17 qq 1 b sin A a sin C <br />b B, e, C sin B= a ,C= 180° —(A+B),c = sin A <br />' Q ' (a—b) tan_' (A+B) <br />a, b, C A, B, a A } B=180°— C, tau , (A=B)= a Z b <br />J � �� `'�� . i � • a — a sin C . <br />asin A <br />b, A <br />- -}-b -{-c � �t = <br />I a--b)(s—c <br />a' , B, C s = 2 sin�A-� be <br />Ir �3() sin IB=�'s—aa c , C=180°—(A+B) <br />_ a+} +c <br />+tai C 5 {� / U t ay..b; ,a " Aiea s ^ 2 , area = s(s—a -)-(8-- ) (s—c 6. <br />'' <br />1 !t� �� y b c sln.A <br />b; o Area area = <br />7 2 <br />.' a sin B sin C <br />lA, B, C, a' ' Area area = 2 sin A <br />f <br />� REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />{ cosine of the vertieal angle. Thus: slope distance=319.4ft. <br />f� K [) spa Ic Vertangle =5° 101. From Table, Page IX. cos 51 ld= <br />I Y v 1 e a� d 9959. Horizontal distance=319.4X.9959=31&09 ft. <br />�N/� 5�op A�.1e a Horizontal mest(lecoslne of'vertcal distance thlthe <br />y "< -4 same figures as in the preceding example, the follow - <br />Horizontal Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302 6— 14 X 14 =302.6-0.32=302.28 ft. <br />O 2X3026 <br />0 K"s Ia U. 8. k <br />