Laserfiche WebLink
I <br />TRIGONOMETRIC FORMULA � <br />i� B B B <br />c ri a c� d c a <br />A b £CA b XCA b AC <br />Right Triangle Oblique Triangles !J <br />Solution of Right Triangles <br />b a b c e <br />For Angle A. sin = a , cos = o , tan= b , cot = a , sec = b , cosec = a <br />Given Required a 2 <br />a,b A,B,c tan A=b=cot B,c= a2+ 2=a 1+ d2 <br />a, -c A, B, b sin A = o = cos B, b — %.c -- <br />/ — a (ca = c <br />A, a B, b, a B=90°—A, b= a cotA, c= . a <br />sin A. <br />A, b B, a, c B=90°—A,a _ btanA,c= b <br />cos A. <br />A, c B, a, b B = 900—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B, a b, c, C b = sin A , C = 180°—(A + B), c = sin A <br />b sin Aa sin C <br />A, a, b B, c, O sin B = a , C = 180°—(A + B) , c = sin A <br />a, b, C A, B, c A+] =180°— C, tan i (A—B)= (a—b) tan 'j' (A+B) <br />= <br />a sin C <br />o <br />sin A <br />a, b, o A, B, C .s=a+b+0 .,in 11A= -J bG—c . <br />1i sinB= a o_ 10=180°—(A+B) <br />a, b, c Areas=a+2+c, <br />A; b, c Area b c sin A <br />area = 2 <br />a2 sin B sin C <br />A, B; C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />_ gree Vert. angle =50 101. From Table, Page IX. cos 50 lot= <br />e 6' e v 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />SN n��e Horizontal distance also=Slone distance minus slope <br />Ve . A a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 51 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=3026 ft. Horizontal distance=3026— 14 X ]4 =302.6-0.32=302 28 ft. <br />2 X 302.6 <br />MADE U1 Y. S. A. <br />