Laserfiche WebLink
/a VSs S U,S. <br />TRIGONOMETRIC FORMULIE <br />` B B B <br />c ¢ c a c a <br />A. b CAA b C d b C <br />MADE W Y. 8. 16 <br />Right Triangle <br />Oblique Triangles <br />Solution of Right Triangles <br />For Angle A.' sin = <br />,cos = a b , cot = a , sec = b , cosec = <br />(liven <br />a, b <br />Required <br />A, B <br />az <br />tan A = = cot B, c = az + z = a 1 TTI <br />,c <br />b <br />a, c <br />A, B, b <br />sin A = a = cos B b , (c+a) c—a az <br />03 <br />A, a <br />•B, b, a <br />B = 90°—A, b = a cot A, c = a <br />sin A. <br />A, b <br />B, a, c <br />B =90'—A, a = b tan A, c = b <br />cos A. <br />A,c <br />B, a, b <br />B=90°—A,a=csin A,b=ccos A, <br />Solution of Oblique Triangles <br />(liven <br />Required <br />a sin B "sin C <br />A, B, a <br />b, c, C <br />h = C = 180°—(A' B), c = <br />sin A sin A <br />A, a, b <br />B, c, C <br />b sin A ,tl = 180°—(A } B), c =a in C <br />s <br />sinB= <br />a sin A <br />a, b, C <br />A, B, c <br />A+B=180°— C, tan i (A—B)= (a—b) tan ? (A+B)� <br />a + b <br />a sin C <br />c= <br />sin A <br />I(s— <br />a, b, o <br />'A, B, C <br />s=a+2+c,sin'A <br />b(a <br />sin;B=VIv(3—aa(sc C=1800—(A+B) <br />v <br />Ea, b;' c <br />Area <br />4=a+2+o, area = s(s—a s— )(s—c <br />b, c <br />Area <br />b c sin A <br />area = <br />2 <br />as sin B sin C <br />A, B, C, a <br />Area <br />area = <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />tQX�0 <br />a ,S0 <br />Vert. angle =5° 101. From Table, Page IX. cos 50 10'= <br />Horizontal <br />s1 040 <br />y 9959. distance =319.4X.9959=318.09 ft <br />Horizontal distance also =Slope distance minus slope <br />An�r-e <br />Q0 <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Tbus: rise=l4 ft, <br />slope distance=302.6 ft <br />Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />MADE W Y. 8. 16 <br />