Laserfiche WebLink
TRIGONOMETRIC FORMUL,1E <br />/'til •�✓ sa g''- B B <br />�t u a ° a c a <br />`. b C f C <br />1Rigbt Triangle Oblique Triangles <br />Solution of Right Triangles <br />i a b a b c <br />For Angle A. sin = c , cos = c , tan= b , cot = a , sec = b cosec = u <br />Given Required = <br />a, b: A, B ,c tan A = b = cot B, e = �y2 + 2 = a 1 + as <br />e <br />A, B, b <br />A, a B, b, c B=90°—A, b= a cotA, c= a . <br />sin A. <br />B, a, c B = 90°-4, a = b tan A, c =. cos A. <br />c_ B, a, b B = 90°—A, a = c sin A, b = c cos A,�`yi <br />Solution of Oblique Triangles <br />Given Required <br />A,'B,a b, c; C b- snA'C=180°—(A+•B),c= sin <br />b sin A a sin C <br />a, b B, c, C sing= a ,C = 180°—(A } B), c = sin A <br />r <br />(a—b) tan !,.(A+B) <br />b, .0 A, B, o A+B=180°—.0, tan ; (A—B)= a , <br />_ a sin C <br />1 r 6 sin A'.. <br />' a+b+c , .I s --b) s—o <br />b, a A, B, C 8= 2 ,sin 7A =-Y b c , <br />sin JB=,\17 a(c C=180°=(d.+B) <br />a+b+c <br />6s, b,• c • Area s= 2 , area = s(s—a) s— (s ---c <br />b. c sin A <br />t, A; k c" Area area = <br />as sin B sin C <br />A, B, C, a 'Area ares = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance =Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4tt. <br />dist�4ce. Vert. angle=5° 101. From Table, Page IX. cos 5°:10'•- <br />9959. Horizontal distance=319.4X.9959=318.09 ft. <br />r�104e Ne <br />4 Horizontal distance also= Slope distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0011. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ante less the square of the rise divided by twice the slope distance. Thus: rise=14 tt:, <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />MADE U4 Y. 11. AL <br />