Laserfiche WebLink
TRIGONOMETRIC FORMULIE <br />7 3 i B B B <br />71 <br />71 '/7 9 <br />r y° b C b C A• b C 34�•i� <br />7g ' ,o�oa e 3 z © __� , �j <br />q- .Right Triangle Oblique Triangles <br />0 5 t' _ Solution of Right Triangles �G <br />a b c c <br />(q. �� �. - For Angle A. sin= a , cos= —,-tan= b , cot ¢ , sec = b; cosec <br />equired a <br />Given R 2 <br />{ 62 a } <br />A,,B,c tangy=—=cocB,c= a2 = 1 z <br />b ! a <br />(� b, /�t� <br />0 . �/ u; ' "a' ;� 'A, B, b sinal = ! = cos B, b = \1 (o+a) (a—a) = o J 1— o <br />A' ` B`/, M x` �� 5 A,`a. B, b, o B=90°—A, b = z cotA, c= a <br />sin A. <br />A, b.B,a,,c B=90°—A,a=btanA,c=cos A. - < <br />g;c- B, a, b. I B=90°—A,a=0sin A,b=ccos A, Ze-) • „' <br />Solution of Oblique Triangles <br />J _ Given Required a sin B , a sin C <br />A, B; ,a b, c, C b = sin A ' C = 180 —(A + B), c = sin A <br />G • ; 6 {{ <br />Il Q r- ? 1.l' i C) b sin A a sin C 1 <br />A, a, b Ac,•C sinB= ,0=180o—(A+B),c= <br />G a sin A Sim <br />i <br />rf�+} ; !J , t4w $ • �1 ~J 7 �r�. b . ir< n®�� o, b, C A, B, o A+B=180°—C,tan ''J(A—B)=(a_b)•an bA+B),� t:..,. <br />4. J.�4 _asin C <br />sin <br />pL j �� )� ' 07 - a+b+c 'A= •� ls—'b)(&—c <br />Com. ®3a�fl a b; o d, B, .0 s= 2 ,ein7V be , <br />--s=a s - <br />Al <br />sin I( )1 ) C=180'—(A B) <br />/.►lS: 1 0'3 1 as + <br />(� t l , �' J • ( 63� 31 r'. = a+b+o i r <br />= - -- I .`s9'b;. c`• Area s= , areas—b (s, <br />"'•_� A, b,.c Area area —1 b.a sin A <br />0 ' S6 aR sin B sin C %J <br />1 S A, B,' C, a 'Area area = <br />2 sin A <br />.REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by D the _ 1 cosine of the vertical angle. Thus: slope distance=319.4ft <br />.4% Vert. Vert. angle = 51 101. From Table, Page IX. cos 50 101= <br />; 3 o aie H 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />� ?; — T P A��1e a <br />distanceHorizonttimest(lccosi a oflvertcal angle).istance rnus Withlthe <br />same figures as in the preceding example, the follow- <br />'Horizontal distance ing result is obtained. Cosine 50 �101=.9959.1—.9959=.0041. �} <br />j 319.4X.0041=1.31.319.4-1,31=318.09 it. , ✓ _ - - When the rise is known, the horizontal distance is approximately:—the slope dist- <br />i • ' ry , G ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft. <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 =3026-0.32=302.28 ft. <br />3 f 2 X 302.6 <br />wtae IN U. a.& <br />