|
Help
|
About
|
Sign Out
Home
Browse
Search
Pg 82
DaneCounty-Planning
>
Clerical
>
Sam
>
Fricky
>
FBs
>
323 - Stoughton
>
Pg 82
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
3/10/2025 9:13:17 AM
Creation date
3/10/2025 9:13:15 AM
Metadata
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
Page 1 of 1
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
CURVE. TABLES. <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a V curve. Tan. and <br />Ext. to any other radius maybe found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central.Angle'and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tarn. <br />or Ext. of twice the given angle'divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P.=23*. 20' to the R. at Station <br />542+72. <br />Ext. in Tab: 1 opposite 231 20' =120.87 <br />120.87—.,12=10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23°20'=1183.1 <br />1183.1=10=118.31. ' <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0-167 118.47 =corrected Tangent. <br />(If corrected Ext. is.required find in same way) <br />Ang.23°20'=23.33°=10=2.3333=L. C. <br />2° 19;'=def. for sta. 542 I. P. =sta. 542+72 <br />4° 49;'' " +50 Tan. = 1 .18.47 - <br />7° 1912'= « a a 543 <br />90 491;— " f° '� +50 B' C. = sta. 541+53.53 <br />11°40'= " " f° 543+ L. C.= 2 .33.33 <br />86.86 E. C. = Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.) =139.41'= <br />2°.19'=def. for sta. 542. <br />ef <br />D. for 50 30' for a 10° Curve. <br />Def: for 36.86 ft. =1° 504' for a 10° Curve. <br />E - <br />e <br />�{•.S- <br />02 • .o / <br />� i �� <br />9 ri0o <br />moo <br />.s7 <br />8 ¢ 099, <br />C--8 . 3 <br />2-6 <br />.7-f- AR2 <br />8.34 <br />. a 4 <br />927.&1-, 887,J7 <br />C - <br />/.,I -7X <br />3,8 <br />99 , .Z 889,6 <br />C- 8.s <br />7 <br />' a <br />z zs <br />¢. <br />Z <br />- 7-4a- <br />-4 3 <br />-7- <br />7-1-4V <br />%1, iZ <br />99 <br />C-7.36 <br />8f 7,.4C- <br />�Ao <br />,0897, <br />o.I/ <br />C-- 7,,e <br />3 V31 <br />3 • z.S-1 <br />9 98 9,999-2s- <br />C-8 . <br />CURVE. TABLES. <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a V curve. Tan. and <br />Ext. to any other radius maybe found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central.Angle'and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tarn. <br />or Ext. of twice the given angle'divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P.=23*. 20' to the R. at Station <br />542+72. <br />Ext. in Tab: 1 opposite 231 20' =120.87 <br />120.87—.,12=10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23°20'=1183.1 <br />1183.1=10=118.31. ' <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0-167 118.47 =corrected Tangent. <br />(If corrected Ext. is.required find in same way) <br />Ang.23°20'=23.33°=10=2.3333=L. C. <br />2° 19;'=def. for sta. 542 I. P. =sta. 542+72 <br />4° 49;'' " +50 Tan. = 1 .18.47 - <br />7° 1912'= « a a 543 <br />90 491;— " f° '� +50 B' C. = sta. 541+53.53 <br />11°40'= " " f° 543+ L. C.= 2 .33.33 <br />86.86 E. C. = Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.) =139.41'= <br />2°.19'=def. for sta. 542. <br />ef <br />D. for 50 30' for a 10° Curve. <br />Def: for 36.86 ft. =1° 504' for a 10° Curve. <br />
The URL can be used to link to this page
Your browser does not support the video tag.