Laserfiche WebLink
i <br />I <br />TABLE II.=Radii, Ordinates and.Deflections. Chord -='100 ft. <br />Mid Def. , Mid. Tan. Def. Def. <br />Deg, . Radius Tan. Def. for Deg. Radius OrdDistfor <br />Ord. Dist. Dist. 1 Ft. . , Dist. 1 Ft, <br />ft.. t, ft. ft. ft, ft. ft, ft. <br />0°10' 34377. 036 .145 .291 0.05 7' 819.0 1.528 'G. 105 12.21 2.10 <br />20 17189. 073 .291 582 0.10 20' 781.8 1.600 .6.395 12.79 2.20 <br />30 11459. ,109 .436 •873 0.15 30 764.5 1,637 6.540 13.08 2,25 <br />40 8594.4.145 .582 1.164 0.20 40 747.9 1.673 6,685 13.37 2.30 <br />50 6875.5 ,182 ,727 1.454 0.25 8 716.8 1.746 6.976 13.95 2,40 <br />1 5729:6 .218 .873 1,745 0.30' 20 688.2 1.819 7.266 14•,53 2.50 <br />10 4911.2 .255 1.018 2.036 0.35 30 674.7 1.855 :7.411 14.82 2.55 <br />0.40 40 661.7 1.892 :7.556 15,11 2.60 <br />20 4297.3 .291 1.184 2.327 <br />30 3819.8 ".327 1.309 2.618 0.45 9 637.3 1.965 7.846.15.69 2.70 <br />40 3437.9 .364 1.454 2.909 0.50 20 614.6 2.037 8.136 16.27 2.80 <br />50 . 3125.4 .400 1,600 3,200 0.55 30 603.8 2:074 8.281 16.56 2.85 <br />8 • 2864.9 .436 1.745 3.490 0.60 40: 593.4 2.110 8.426 16.85 2.90 <br />10 2644.6 '.473 1.891 3.781 '0.65 10 573.7 2.183 '8.716,17.43 3.00 <br />20 2455.7 :509 2.03G 4.072 0.70 30 546.4 2.292 9.150 18.30 3.15 <br />30 2292,0 ,545 2,181. 4363 0.75 11 521.7 2,402 '9.585 19.16 3.30 <br />40 2148.8 ',582 2.327. 4,.654 0.80 30 499.1 2.511 10.02 20.04 3:45 <br />b0. 2022..85 -12• 478,3 2,620 10.45 20.913.60 <br />4 .618 2,472 4.945 0 <br />E 1910.4 .655 2.618 5.235 0.90 , :30 459.3 2,730 10.89 21.77 3.75 <br />0.95 <br />10- 1809.6 .691 2,763 5.526 13 441.7 2,839 11.32 22.64 3.90 <br />20 .1719.1 .727 2,908 5.817 1.00 30 425.4 2,949 11.75 23.51 4.05 <br />30. 1637.3 .764 3,054 6.108 1.05 14 410.3 3,058 12.18 24.37 4.20 <br />40 1562,9 .800 3,199 6.398 1.10 30 396.2 3,168 12.62 25.2.4 4.35 <br />50 1495.0 _,836 3,345 6.689 1.15 15` 383.1 3,277.13.05 26.11 4:50 <br />1432.7 '.873 3.490 6.950 1.20 30 370,8 3,387 13.49' 26.97 4.65 <br />-10 1375.4 ,909 3,635 "7.271 1.25 '16' 359.3 3,496 13.92 27.84 4.80 <br />20 1322.5 ,.945 3,718 7.561 1.30 30 348.5 3,606 14.35 28.70 4.95 <br />30 -1273.6 .9823,926 7,852 1.35, 17 338.3 3,716 "14.78 29.56 5.10 <br />40 1228,1 1,018 4.071 8.143 1.40 18. 319.6 3,935 15.64 31.29 5.40 <br />50' 1185.8 1,055 4.217 8,433 1.45 19 302.9 4.155 16.51 33.01 5.70 <br />6 1146.3 1.091 4.362 g•724 1.50 20' 287.9 4.374 17.37 34.73 6.00 <br />10 1109.3 1.127 4.507 9.014. 1.55 21 274.4 4.594 18:22 36.44.6.30 <br />20 1074.7 1.164 4.653 .9,305 1.60. `22` 262.0 4,814 19.08 38,16 6.60 <br />30 1042.1"1,200 4,798 9.596 1.65 23 250.8 5.035 19:94 39.87 6.90 <br />40 1011.5 1,237 4.943 9,886 1.70 24 240.5 5.255 20.79 41.58 7.20 <br />50 982.6 1,273 5.088 10.18' 1.75. '.25. 231,0 5,476 21,64 43,28 7.50 <br />8, 955.4 1,309 5,234 10.47 1.80 26 222,3 5.697 22.50 44.99 7:80 <br />10 929.6 1.346 5.379 10.76 1.85 27, 214.2 5.918 23.35 46.69 8.10 <br />20 905.1 1,382 5.524 11.05 1-9028 206.7 6,139 24.19 48.38 8.40 <br />30 881.9 1,"418 5.669 11.34 1.95 29 199.7 6.360 25.04 50.07 8,70 <br />40 859.9 1,455 5.814 11.63 2.00 30, 193.2 6.583125:8 8 51.76 9.00 <br />The middle ordinate in inches for any cord of length (C) is equal to .0012 C' <br />multiplied by the middle ordinato taken from the above table. Thus, if it <br />desired to bend it 30 ft. rail to fit a 10 degree curve, its middle ordinate'shonid <br />be .0012X900X2:183 or 2.36 inches, <br />TABLE III. 11„flartinns for Sub Chords for Short Radius Curves. <br />7egree <br />of <br />Curvesin, <br />Radius <br />50 <br />i def, an g <br />12.5 <br />1° <br />y4 <br />Ft. <br />SI, <br />sub chord <br />�- <br />15 <br />20.171 <br />Ft. <br />sin of <br />'J def. <br />angle <br />31' <br />Length <br />of arc <br />for 100 ft. <br />20 Ft. <br />25 Ft. <br />30' <br />193.18 <br />2058" <br />-3043' <br />101,15 <br />32° <br />181.39 <br />1° <br />59, <br />2 <br />25 <br />3 <br />Io <br />3 <br />58 <br />I0I.33 <br />34° <br />r71.01 <br />2° <br />06' <br />20 <br />33� <br />30 <br />zI1 <br />40 <br />12' <br />IOI.¢S <br />360 <br />161.8o <br />2° <br />13' <br />2° <br />41, <br />3° <br />33, <br />4° <br />26 <br />io1.66 <br />38° <br />153.58 <br />z ° <br />20 <br />2 <br />49 <br />3 <br />44 <br />4 <br />40 <br />I0I.85 <br />40° <br />146.19 <br />2°�7' <br />16 <br />° <br />2 <br />, <br />57 <br />° <br />3 <br />55 <br />° <br />4 <br />54 <br />102.06 <br />42' <br />139.52 <br />2o34, <br />, <br />30 <br />05� <br />40 <br />071 <br />50 <br />08� <br />Ioz.29 <br />° <br />I 47 <br />o <br />2° <br />41, <br />3 <br />13 <br />¢ <br />18 <br />5.22 <br />38 <br />102.53 <br />6° <br />4 <br />123 <br />7.97 <br />2° <br />48, <br />3° <br />029/ <br />zI' <br />4° <br />29' <br />S° <br />36' <br />102.76 <br />° <br />¢8° <br />I22.9z <br />2°55, <br />59 <br />3°3' <br />10, <br />4°51' <br />o' <br />6°04' <br />o' <br />103-00 <br />50 <br />118.31 <br />3 <br />Oz <br />60 <br />1 1,0000 <br />Io3.24 <br />520 <br />114,06 <br />30 <br />09; <br />5° <br />�3'. <br />6° <br />110.11 <br />3° <br />54� <br />3i' <br />Io3.84. <br />55° <br />1o6.5o <br />3° <br />22, <br />40 <br />02/ <br />5 0 <br />23' <br />60 <br />44' <br />IO¢, 14 <br />0 <br />1 <br />4° <br />10 <br />5° <br />44, <br />11, <br />104 <br />60° <br />100.000 <br />3° <br />35� <br />18' <br />7° <br />I .72 . <br />CURVE FORMULAS <br />T= <br />Rtan I R= T cot. a I Chord def. =.chorda <br />T= 50 Sin, J D R= 60 R <br />I D <br />Sin. 11 D = 50 Sin, 2 No. chords = I ` <br />R E R ex. sec z I D <br />5o tan ; I <br />„Sin. A D= T E= T tan I I Tan. def. = a chord def. <br />The square of any distance, divided by twice the radius, will equal <br />the, distance from tangent to curve, very nearly. <br />'To find angle for a given distance and deflection. <br />Rule I: Multiply the given distance by .01945 (def. for I° for i ft. <br />see Table II.), and divide given deflection by the product. <br />'Rule 2. Multiply given deflection by 57,3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. 'Square the attitude, divide *by twice the <br />base. Add quotient to base for hypotenuse. . <br />Given Base loo, Alt. Io.Io2=200=.5. 100-{-.5=100,5 hyp., <br />Given Hyp. Ioo, Alt. 25.25z=lob=3.125. 100-3.125=96.875=Base. <br />Error in first, example, .002; in last, .045• <br />To find Tons of Rail in one mile of track: multiply weight per yard <br />by If, and divide by .7. <br />LEVELING. The correction for curvature and refraction, in feet <br />and decimals of feetis equal to 0.574d2, where d is the distance in miles. <br />The correction for curvature alone is closely, jda. The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If d,., da, da, etc. are the discrepancies of various <br />results from the mean, and if 7 -de =the sum of the squares of.these differ- <br />ences and n=the number of observations, then the probable eiror of the <br />a. <br />mean- ± 0.6745 1d <br />n --(n- ) <br />SOLAR EPHEMERIS. Attention is called to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co.,`and furnished free of <br />charge upon request, which is 31,x58 in., with about 90 pages of data -very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solarattachments; directions and tables for determining the meridian <br />and the latitude from observations on the sun and Polaris;'stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric f ormulas; Natural -and Logarithmic Functions; <br />and Logarithms of Numbers. <br />- 'TABLE 1V. - Minutes <br />TABLE V. - <br />in"Decimals of a Degree. <br />1' <br />.0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />31' <br />.5167 <br />41' <br />.6833. <br />51' <br />.8500 <br />2,• <br />.0333 <br />12 <br />,2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />,0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />:5500 <br />43 <br />:7167 <br />53 <br />.8833" <br />L <br />.0667 <br />14 <br />,2333 <br />24 <br />.4000 <br />34 <br />.5662 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />,0833 <br />15 <br />,2500 <br />25 <br />.4167 <br />35 <br />.5833" <br />45 <br />:7500 <br />55 <br />:9167 <br />6.' <br />.1000 <br />16 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000, <br />46 <br />.7667 <br />56 <br />.9333 <br />7 <br />.1167 <br />17 <br />.2833.. <br />27 <br />'.4500 <br />37 <br />.6167 <br />47 <br />,7833 <br />57 <br />,9500 <br />8 <br />.1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333_ <br />48 <br />.8000 <br />58 <br />.9667 <br />9 <br />.1500 <br />19 <br />'.3167 <br />29' <br />,4833 <br />•39 <br />.6500 <br />49 <br />.8167 <br />59 <br />9833 <br />10, <br />1 .1667 11 <br />20 <br />1 .3333. <br />_ <br />30 <br />1 .5000 <br />11 40 1 <br />.6667 <br />.50 <br />.83331, <br />60 <br />1 1,0000 <br />TABLE V. - <br />Inches in Decimals of a root. <br />" <br />1-16332 <br />Y8 <br />3-16 <br />Y4 <br />5-16 <br />Y8 <br />Y8 <br />Y4 <br />0052 <br />.0078 <br />.6104 <br />.0156 <br />.0208 <br />.0260 <br />.0313 <br />.0417 J1521 <br />.0625 <br />1.0729 <br />1 <br />2 <br />3 <br />4 <br />5 <br />6 <br />7 <br />8 9 <br />10 <br />11 <br />.,0833 <br />.1667 <br />.,2500 <br />,3333 <br />.4167 <br />..5000 <br />.5833 <br />-:6667 .7500 <br />.8333 <br />1 .9167- <br />. 11 <br />