Laserfiche WebLink
=:• ` 75 361(Oack {✓oma ��d1 hawse <br />od g2 j �l 74�a �t7 � � L, wN�Cke,✓2v / <br />- 13 - , �rea�e✓. rD <br />t 7 5� r»I w�✓o K.-�it e <br />o l <br />Z 0 9. 7 t z <br />d o <br />x o all" 6.a i <br />1, Z9�0O <br />� 174 I � r lUo <br />� 1 <br />�� Tl <br />j TRIGONOMETRIC FORMULAE <br />t B B B <br />c a ° a c a <br />b 'CA�b OA b `C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angled sin = , cos = a , tan = b , cot = ,sec = b , cosec = <br />(fiven Required a <br />a, b; A,B,e, tanA=b=cotB,c= a2 2=a 1 { a2 <br />i <br />x <br />q, o' A, B, b sin A = o = cos B, b — \/ (c a (c—a) = c I_E_ <br />s <br />B,, b, e . B=900—A, b = a cotA,.a= a <br />stn A. <br />A, b B, a, e. B = 90°—A, a = b tan A, o= b <br />' cos A. <br />A, c. B, a, b B = 90°—A, a = e sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required <br />A, B, a b, c, C b sin A ' C = 1807—(A + B), c = sin Al <br />e b sin A 1$0°—(A a sin C <br />A, a, b B, e, C sin B= a ,C = } B), c = sin A <br />a, b, O A, B, e A+B=180°— C; tan '-2 (A—B)= (a—b).tan $ (A+B) <br />B)� <br />a -1- b <br />�c^asin C <br />sin A <br />+b+ <br />a, b, c A, B, C s = 2 ,sin jA=AI b c ' <br />sing= (s—a)1s—o C=180°—(A+B) <br />ac <br />a+b+c <br />a, b; "c Area s= , area =s(T_1 (s— s—c <br />A; b, c Area area = basin A 2 <br />a2 sin B sin C <br />)A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance —Slope distance multiplied by the <br />cosine of the vertical angle..Thus: slope distance =319.4 ft. <br />_ tiarpe Vert. angle =5° 101. From Table, Page IX. cos 51101= <br />a ass y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />g1oQ ngle Horizontal distance also=Slope distance minus slope <br />1' a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained Cosine 5° 10'=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =3026-0.32=302.28 ft. <br />2 X 302.6 <br />YnDE 1N U.S. M <br />