Laserfiche WebLink
TRIGONOMETRIC FORMULtE <br />- B B , B <br />— ° c a c a c a <br />A A <br />b C b _ .0 �, ` C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />i t a b a b c e <br />For Angle A. , sin = e ,cos = c tan = b , cot = a , sec = b , cosec = <br />{�� a ` Z) Given Required a a <br />�. z <br />�qa c,vAyl It ' :a,b A,B,e tan A=b= cot B,a a2 { 2=a 1+ a <br />2 <br />A, B, b sin A = a = cos B, b = (c l a) (tea) = c 1 _ a2 <br />"i c <br />t --A, a B, b, c B=90°—A, b= acotA,c= <br />`�G tit! sin A. <br />{� t 2' �2 a S - �, b B, a; c B = 90°—A, a b tan A, c = b <br />cos A. <br />til , 7 ; .7 Z z A, c B, a, b B = 90'—A ix = c sin A, b = c cos A, <br />X�5_ <br />/ <br />'.o' �-' - Solution of Oblique Triangles <br />0 6 7- 3 e Given Required <br />�S % _ „ / . A; B, a b, c, C b = a sin B C = 180°—(A + B), c = a sin C <br />0 v/ o sin A' sin A <br />/° 3 b sin A a sin C <br />0 0 J \ �� Z � 3 0 A.'a, b B,;c C sin B= a ,C' = 180°—(A + B), c = _sin A <br />(a=b) tan '- (A -f <br />- <br />AB) <br />3 0 <br />-b, C- A, B _ c A+B=180°— C, tan 2 (A—B)= a + b <br />C7 _ a sin C <br />1�v. sin A <br />a+b Fe I(s— <br />N a, b, e A, B, .0 s = 2 ,sin ;A= be <br />sin 'B= <br />2— ac C',— <br />2 — Y =180° —(A+B) <br />Z 3-v �.i.a. <br />1 6 va+b+e <br />,V fn o r , .c. Area 4= 2 , area =: .s(s—a (s—b (s—c <br />I A b, c <br />- � ( Area' b e sin A <br />� area = 2 <br />y n A 7 /�` <br />p / I area = <br />a2 sin B sin C <br />`j 4' 1 /O "� I A, B, C a Area 2sin A <br />�i REDUCTION TO HORIZONTAL <br />i U L �n , - Horizontal distance = Slope distance multiplied by the <br />V cosine'of the vertical angle. Thus: slope distance =319.4 ft. <br />r /� I tarts Vert. angle= 50 101. From Table, Page IX. cos 50 10'= <br />a�0 d 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />f <br />so pe ngXe a Horizontal distance also =Slope distance minus slope <br />Q (�. ..A- - distance times (1—cosine of vertical angle). With the <br />VQ <br />(� same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 10'=.9959.1.9959=.0041. <br />r 319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />G �I ante less the square of the rise divided by twice the slope distance. Thus: rise =14 ft.. <br />/ - n slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft. <br />\ 'h /, \: 2X302.6 <br />tl sine u+ U. S. a <br />�O - — -- A <br />