Laserfiche WebLink
r } TRIGONOMETRIC FORMULlE <br />B B <br />--i A a CAA b C A b C <br />® Right Triangle I Oblique Triangles <br />Solution of Right Triangles <br />a b a b o e <br />For Angle -A., sin = , cos = , tan= , cot = , sec = , cosec = <br />, t y. ,,d : en7 c c b a b a <br />�: T 1G►ven• Required a z <br />,c tan A = b =cot B, c = a2 _+T2_ = a 1 + a <br />.. <br />.ilgy0 A, B, b• sinA=�=cosB,b=\/(c+a)(e—a)=o,11-02 . <br />d, a. B, b, c B=90°—A, b= acotA, c= a V <br />(' sin A. <br />A, b B, a, e B = 90°—A, a = b tan A, c = b <br />cos A. <br />A, c B, a, b B=901—A, a = e sin A, b= c cos A, <br />Solution of Oblique- Triangles <br />Given Required <br />rA, B,a b, c, C b=asinB�C=180°—(A+B),o=asinC <br />sin A sin A <br />a <br />A, a, b B, c, C sin g= b sin A ,C = 180°—(A sin C <br />a B), c = sin A <br />•77 �/ �)�(' 0. b, 0 A, B, e A+B=180°— C, tan a (A—B)= (a -b) tan ((A+B)� <br />a sin C a <br />sin A <br />a+b +c I <br />os, b, o A, B, C s= 2 ,sin,A— be , <br />sin 2B= J s a(c ,C=180°—(A+B) <br />8,' b, a Area s=a+b+c, area <br />2 <br />A, b, c Area b e sin A <br />area = 2 <br />a2 sin B sin C <br />'A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />taupe Vert. angle =50 101. From Table, Page IX. cos 50 10'= <br />p40 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />g� ,_,,e Horizontal distance also= Slope distance minus slope <br />Ve a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />- Horizontal'distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 =302.6-0.32=30228 ft. <br />2 X 302.6 <br />• NAGE W N. S. A: <br />\1 <br />i <br />r } TRIGONOMETRIC FORMULlE <br />B B <br />--i A a CAA b C A b C <br />® Right Triangle I Oblique Triangles <br />Solution of Right Triangles <br />a b a b o e <br />For Angle -A., sin = , cos = , tan= , cot = , sec = , cosec = <br />, t y. ,,d : en7 c c b a b a <br />�: T 1G►ven• Required a z <br />,c tan A = b =cot B, c = a2 _+T2_ = a 1 + a <br />.. <br />.ilgy0 A, B, b• sinA=�=cosB,b=\/(c+a)(e—a)=o,11-02 . <br />d, a. B, b, c B=90°—A, b= acotA, c= a V <br />(' sin A. <br />A, b B, a, e B = 90°—A, a = b tan A, c = b <br />cos A. <br />A, c B, a, b B=901—A, a = e sin A, b= c cos A, <br />Solution of Oblique- Triangles <br />Given Required <br />rA, B,a b, c, C b=asinB�C=180°—(A+B),o=asinC <br />sin A sin A <br />a <br />A, a, b B, c, C sin g= b sin A ,C = 180°—(A sin C <br />a B), c = sin A <br />•77 �/ �)�(' 0. b, 0 A, B, e A+B=180°— C, tan a (A—B)= (a -b) tan ((A+B)� <br />a sin C a <br />sin A <br />a+b +c I <br />os, b, o A, B, C s= 2 ,sin,A— be , <br />sin 2B= J s a(c ,C=180°—(A+B) <br />8,' b, a Area s=a+b+c, area <br />2 <br />A, b, c Area b e sin A <br />area = 2 <br />a2 sin B sin C <br />'A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />taupe Vert. angle =50 101. From Table, Page IX. cos 50 10'= <br />p40 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />g� ,_,,e Horizontal distance also= Slope distance minus slope <br />Ve a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />- Horizontal'distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 =302.6-0.32=30228 ft. <br />2 X 302.6 <br />• NAGE W N. S. A: <br />