Laserfiche WebLink
ALk '40 R <br />C_ A� ' i , TRIGONOMETRIC FORMIJUE <br />1f 4'6 B <br />' Z a f a a'' x•G <br />I� l°� f <br />3iy b C Afb C A b C <br />+" �� ✓ sg R <br />Right Triangle Oblique. -Triangles <br />J �4 —*— <br />' Solution of Right Triangles <br />0S . <br />�{ 1 C� a ..1 a b 'ice b <br />For. Angle A. sin = G , cos = ,fan = fb / icot= a ,sec = b , cosec <br />� ® Given ' 'Required a �;` z'1 <br />5� 1 <br />p �\ a, b A, B ,c tan A = b = cot'jB c = az -i- z = a 1 + az <br />Vp i U+. tr <br />y {� z• <br />���(t� ���, cc, c A,B,b sinA=� _Ys$b=�(c+a)(c—a)=c.�.1- o <br />V y 2 <br />j <br />A, a B, b, -c' B=90°—A, b = a cotA, c= I sin A. <br />A, b B, a, c B= 90°—A, a= b tan A, c= <br />r � F � '�✓J - ,�- ° o o � - � cos A. i <br />3 � <br />A, c B, a, b B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique. Triangles ' <br />Given Requireda sin B / ; <br />61 S- X 9'a A, B, a b, c, C b — sin A ' =.180°�—(A F B) c,= sin A } ri <br />bsin � i asin <br />C <br />A,' a, b B, c, C sin B = a = 180°—(A ' l B); o = sin A <br />b, C � A B c \ (a—b) tan I (A+B) f Y' <br />a, A } B=180°— �, tan a (A — 'B)= <br />a+ b '' <br />Z _ _ a'sin C + <br />1 ua2='' 2z-1fp'/ , 7r`' c sin1A <br />cid b { c t <br />a, b, c A, B, C s= 2 in A= bc'. Ct, <br />s <br />jy`:sin zB= C=180°—(A+B) yryµ <br />a c N t <br />b, c.. AreaFp .. t, area = s(8—a) (s—b) (s—c j <br />bto <br />sin A <br />A, b; c Area area t ``2 <br />ai sir1fiB 61n Ci <br />A,'B, C, a Area area = <br />1'•C-' 0b' �/ 13 <br />1 � ' <br />U( <br />j <br />(2 stn A R <br />REDUCTIONJ,,HORIZONTAL <br />Horizontal distance=,Slope distance multiplied by fhe, <br />cosine of the'wertical angle. Thus: slope distance =319.4' <br />9959. Horizontal distance-- 19.4X.9959e 318.09 Pt,b°Y- Ops <br />L 1 1 51oQ ogle Horizontalldistance also=Slope distance minus slo <br />1� Y, " I ve . p' h�� a 'distance times, (1—cosine of vertical-�t <br />angle). With <br />same figures 'as in theipreceding example, the —.follo. <br />Horizontal distance - ing result is obtained. Cosine 51 101=.9959.19959=.00 <br />l+lt 319.4X.0041=,1.31.319.4-1.31=318.09 ft. l <br />i When the riseds known, the horizontal distance is approximately:: the slope di <br />ante less the square of the rise divided by`{twice the slope distance. Thus: rise=141 <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =3026-0.32=302.28 ft. <br />d I !U 17 2X302.6 — <br />+ ' J MADE Ia V, &.A <br />