Laserfiche WebLink
TRIGONOMETRIC FORMULIE <br />B B B <br />a c a c a <br />Ig b C Ab G A C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />i For Angle A. sin = a , cos = b , tan= a , cot = b , sec o , cosec = o' <br />c c b a b a <br />Given Required a <br />a,b. A,B,c tanA=b= cot B,c= a2+T2 a 1T as <br />a,c A,B,'b sinA=a=cos B,b=�/(C+a)(o—a)=c�1—off <br />A, a B, b, c B=90°—A, b = a cotA, c= sin A. <br />A, b B, a, e B = 90°—A, a = b tan A, c = b <br />cos A. <br />A, c B, a, b I B = 90°—A, a =.c sin A, b = e, cos A, <br />Solution of. Oblique Triangles <br />Given Required a sin Ba sin C <br />A, B, a. b, c, C b = sin A , C = 180o—(A + B), c = sin A <br />b sin Aa sin C <br />A, a, b B, e, C sin B = a , C = 180°—(A + B) , c = sin A <br />a, b, C A, B, c A+B=180°— C, tan 1,b <br />(A—B)= (a—b) tan '-, B)� <br />t asin C a+ <br />e,= <br />sin A <br />b, c A, B, C s=a+2+c'sin'A= V(3— a(C—c <br />sin aB= J(s—aa C=180°--(A+B) <br />a, b, c Area 8= a+2 +c , area = s (s—a (s—) (s— c <br />b c sin A <br />A, b, c -Area area = 2 <br />az sin B sin C . <br />B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e <br />1 cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />�9opVert. angle= 51 101. From Table, Page IX. cos 51 10'= <br />040 <br />6 <br />1s y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />5, Anse a distancet timest(lecosine oflvertcalance ngle).11Withlthe <br />.v0 same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 10'=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist-' <br />ante less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 _302.6-0.32=302.28 ft. <br />2 X 302.6 <br />xAne w u.e.A- <br />I <br />A <br />yJ <br />f� <br />�i <br />�s o <br />TRIGONOMETRIC FORMULIE <br />B B B <br />a c a c a <br />Ig b C Ab G A C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />i For Angle A. sin = a , cos = b , tan= a , cot = b , sec o , cosec = o' <br />c c b a b a <br />Given Required a <br />a,b. A,B,c tanA=b= cot B,c= a2+T2 a 1T as <br />a,c A,B,'b sinA=a=cos B,b=�/(C+a)(o—a)=c�1—off <br />A, a B, b, c B=90°—A, b = a cotA, c= sin A. <br />A, b B, a, e B = 90°—A, a = b tan A, c = b <br />cos A. <br />A, c B, a, b I B = 90°—A, a =.c sin A, b = e, cos A, <br />Solution of. Oblique Triangles <br />Given Required a sin Ba sin C <br />A, B, a. b, c, C b = sin A , C = 180o—(A + B), c = sin A <br />b sin Aa sin C <br />A, a, b B, e, C sin B = a , C = 180°—(A + B) , c = sin A <br />a, b, C A, B, c A+B=180°— C, tan 1,b <br />(A—B)= (a—b) tan '-, B)� <br />t asin C a+ <br />e,= <br />sin A <br />b, c A, B, C s=a+2+c'sin'A= V(3— a(C—c <br />sin aB= J(s—aa C=180°--(A+B) <br />a, b, c Area 8= a+2 +c , area = s (s—a (s—) (s— c <br />b c sin A <br />A, b, c -Area area = 2 <br />az sin B sin C . <br />B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e <br />1 cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />�9opVert. angle= 51 101. From Table, Page IX. cos 51 10'= <br />040 <br />6 <br />1s y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />5, Anse a distancet timest(lecosine oflvertcalance ngle).11Withlthe <br />.v0 same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 10'=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist-' <br />ante less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 _302.6-0.32=302.28 ft. <br />2 X 302.6 <br />xAne w u.e.A- <br />I <br />A <br />