Laserfiche WebLink
TRIGONOMETRIC FORMUL S,, <br />B B <br />17 <br />_9 a c a <br />` a a a <br />70 <br />7 A�b C A C <br />knight Triangle Oblique Triangles — o--�� . <br />} 2 '] � Solution of Right Triangles <br />I�� z For Angle A. sin = a , cos = a , tan= b , cot = a , sec = b- cosec = a <br />V Given " Required a <br />A=I <br />�S a,b A,B,c tan. b=cot B4O a2+ z=a 1+a-= <br />` .4a1 4YI J i �� z <br />). A, B, b sin A = a = cos B� b = (a i a) (a—a) = a 1= a' / . . <br />c o <br />5 Y d I 7a -2- �, a B, b, c B= 90°—d, b= a cotA, c- <br />7.sin A. <br />b' <br />qqyy� �Z,� A, b B, a, c B = 90°—A, a = b tan A, c = <br />5 <br />.n.i Z,cOs A. <br />3-,A, c B, a, b . B = 90°—A, a = c sin A, b = c cos A, - <br />Solution of Oblique Triangles <br />Given Required <br />_ asinB , asin C 1 <br />A' B'a -b' c' C b sin'A'C=180—(A+ B),c= sin A' <br />+ /r� <br />A,a,b B,c,C sin B=bsaA,C=180°—(A+B),�= sin <br />a, b, C A, B, c A+B=180°— C, tan ; (A—B)= (a—b) tan z (A+B) <br />a+b <br />v a sin C <br />sin A <br />a, b, o A, B, C s= 2 ,sin A= be <br />_ <br />9 1 ;. cl ° g D % f �• sin 1B= I(s—a)(s—c) C=180°—(A+B) <br />ac <br />c6 5G ✓may -tea_ -. 1S o: a+b+c <br />ay b, a Area s= 2 , area = s(s—a) (s— (s—c <br />\� S <br />/7 9 G d A, b, c Area aiea = b o sin A <br />-► <br />2 <br />Scl 4 o z _ 0 7 z <br />?.d - P-- ` r /�!Zr'�' Ste' I A,B, C,a Area area = a s2 sin <br />B C <br />%11 2��1 03 J tr /�, zZ v REDUCTION TO HORIZONTAL p� 2 Horizontal distance= Slope distance multiplied by the <br />§'i 1 \ % ✓' /-- Icosine of the vertical angle. Thus: slope distance=319.4 ft. <br />t�nce Vert. angle =50 101. From Table, Page IX. cos 50 10'= <br />o ass d 9959. Horizontal distance=319.4X.9959=31&09 ft. <br />51oQ Angle ix Horizontal distance also=Slone distance minus slope' <br />}� <br />4e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />a! F rl ` } p , r� , j Horizontal distance ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />0 rf 319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />U When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />l / slope distance=302.6 ft. Horizontal distance=302 6— 14 > 14 =302.6-0.32=302.28 ft. <br />® 2 X 302.6 <br />qtr <br />encs is U. e. a <br />.i <br />