Laserfiche WebLink
i <br />i <br />CURVE "TABLES. <br />Published by KEUFFEL &, ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Tattle I:' contains Tangents and Externals to a'1° curve. Tan: and <br />Ext. to any other radius may be found nearly enough, by dividing theTan. <br />or Ext. opposite the given Central An le by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find 'Deg. of Curve,: having'the Central Angle and External: <br />Divide Ext: opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided' by the radius of a V curve will <br />be the Nat. -Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =23° 20' to the R. at Station <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />120.87 =12 =10.07. Say a IOP Curve. <br />Tan. in Tab. I opp. 23' 20'=1183.1 <br />1183.1-10=118.31. <br />Correction for A. 23a� 20' for a 10° Cur. =0.16 <br />118.31-{-0:16 =118.47 =corrected Tangent. <br />'(If corrected Ext: is.repired find in same way) <br />Ang.23°20'=23.33 a -10=2.3333=L. C. <br />2°191'=def. for sta. 542 :I. P.=sta. , 542+72 <br />4049i1 _ +50 Tan. = 1 .18.47 <br />7-1012' _ 543 <br />9°'491'= "' " " " +50 B. C.=sta. 541+53.53 <br />11° 40'= " " 543-1. L. C.= , 2 .33.33 <br />86.86 E. C.=Sta. 543+86.86 <br />100=53.53=46.47Xq'(def."for 1 ft. of'.10° Cur.)=139.41'= <br />2°.191'=def. for std: 542. , <br />Def: for 50 ft. =2° 30' for -a 10° Curve: <br />Def. for 36.86 ft. =1° 501' for a 10° Curve. . <br />. I.P.An9.23W90" <br />N <br />10' Gut W <br />4.0 %/ / N <br />V <br />3 �L9 V <br />Cv <br />O <br />— <br />U <br />i <br />ID <br />i <br />CURVE "TABLES. <br />Published by KEUFFEL &, ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Tattle I:' contains Tangents and Externals to a'1° curve. Tan: and <br />Ext. to any other radius may be found nearly enough, by dividing theTan. <br />or Ext. opposite the given Central An le by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find 'Deg. of Curve,: having'the Central Angle and External: <br />Divide Ext: opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided' by the radius of a V curve will <br />be the Nat. -Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =23° 20' to the R. at Station <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />120.87 =12 =10.07. Say a IOP Curve. <br />Tan. in Tab. I opp. 23' 20'=1183.1 <br />1183.1-10=118.31. <br />Correction for A. 23a� 20' for a 10° Cur. =0.16 <br />118.31-{-0:16 =118.47 =corrected Tangent. <br />'(If corrected Ext: is.repired find in same way) <br />Ang.23°20'=23.33 a -10=2.3333=L. C. <br />2°191'=def. for sta. 542 :I. P.=sta. , 542+72 <br />4049i1 _ +50 Tan. = 1 .18.47 <br />7-1012' _ 543 <br />9°'491'= "' " " " +50 B. C.=sta. 541+53.53 <br />11° 40'= " " 543-1. L. C.= , 2 .33.33 <br />86.86 E. C.=Sta. 543+86.86 <br />100=53.53=46.47Xq'(def."for 1 ft. of'.10° Cur.)=139.41'= <br />2°.191'=def. for std: 542. , <br />Def: for 50 ft. =2° 30' for -a 10° Curve: <br />Def. for 36.86 ft. =1° 501' for a 10° Curve. . <br />. I.P.An9.23W90" <br />N <br />10' Gut W <br />4.0 %/ / N <br />