Laserfiche WebLink
66e, 22 G3S )9 <br />3 TRIGONOMETRIC FO <br />/p�9 1 B B� <br />3S r�� 9�i JS Vl s <br />g h 0,1 12 h c a c l a�JCC <br />, 1 / �A b CA <br />�G$ . 31 15 %� i�i3 �.��Right Triangle —— Oblique Triangles <br />i5 z 3S ' - Solution of Right Triangles <br />3 For Angle :±`sin,= c ,cos ,tan= b , cot = a , sec = b, cosec = a <br />©QpIJ o0. <br />! 9 a Given Required � ry b2 <br />a, b d, B.;o tan A = b = cot B, c = a1 + bz a 1.+ �: <br />35.3 2 <br />999 3 9 S b% r%l`fv a; c.' A, B, b sin cos B, i a)(c—a)=c�1—c2 <br />Ff j _ G'p 3 99 j;Z9f' 1 A, a;' .B. -b, c B=90°—A, b = a cotA, e,= sin A. A <br />j . A, b � . B, a, c B = 90°—A, a = b tan A, c = <br />fcos A. l <br />A, c B, a, b I B = 90°—A, a c sin A, b J-1 cos A, g v <br />n •••,, %i'"/ , Solution of Oblique Triangles . <br />f i ? ji(� O O. 6 p f� . , Given Required a sin B a sin C <br />180°—A+B), <br />sin A c= <br />' ( sin A <br />b sin Aa sin C <br />i A,a b B c,C sinB= a ,C=180—(A+B),c= sin <br />a, b, C A, B, c A+B=180°— C, tan 2' (A—B)= (a—b) tan z (A+B)� <br />a + b <br />. ZD 30 a=asinC <br />b - fr,� - A <br />'L D <br />0 <br />9993. S, <br />sin <br />Y? Of, <br />r' <br />a, b, e, <br />A, B, C <br />a+b+oi — _ I(s— b)(s—c) <br />s = 2A <br />2 .,sin --v b c ' <br />UT <br />sin 2 aB=-) c , C--180 (A+B) <br />a+b+c. <br />a, b;- c <br />Area <br />s = 2 , area <br />Z _ _ <br />A, b, c" <br />Are ab <br />e sin A ' <br />area = 2' <br />a2 sin B sin C <br />Z <br />A, B, C, a <br />Area <br />area = 2 sin A <br />3• <br />•REDUCTION TO HORIZONTAL <br />���• <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Tb us: slope distance =319.4 ft. <br />10+= <br />Stance <br />Vert. angle =5° 10+. From Table, Page IX. cos 50 <br />e a� <br />N 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />— <br />�1p4 <br />riz ttiestane also= slope <br />CG -co With <br />Ve <br />ine ofSlope <br />angle). <br />distance (l vertical angle). <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 51 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31:319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft <br />2 X 3026 <br />' MADE ai Y. a. A. <br />