Laserfiche WebLink
' TRIGONOMETRIC FORMUL/E <br />B <br />c a c a c a <br />A b CA� b C,A C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin = ,cos = ,tan = b ,cot = a ,sec = b, cosec = a <br />Given Required a z <br />a, b. A;B,o tan A=b= cot B,o= az z=a 1-}-dz <br />z <br />a, c A, B, b sin A = = cos B, b = \1-(c+ a) (c—a) = c 1— a a <br />A, a B; b, c B=90°=A, b= a cotA, c= a <br />sin A. <br />A, b B, a, o- B =900—A, a = b tan A, c = b <br />X cos A. <br />A, c B, a, b B = 90°—A, a = c sin A, b = e cos A, <br />Solution of Oblique Triangles <br />Given Required <br />A, B,a b, e, C b=asinB�C=180°—(A+B),c=asinC <br />sin A sin A <br />b sin A a sin C <br />A; a, b B, o, C sin B= a —, C = 180°.—(A' (B), c = sin A <br />a, b, C A, B, c A+B=180°— C, tan ; (A -B)= a—b) tan $ (A+B)� <br />a + b <br />c= <br />a sin C <br />sin A <br />d, b, c A, B, C s=a+2+c,,inlA= Y(s— b <br />,I <br />sin'B= Y ac ,C=180°—(A+B) <br />a+b+c <br />i ca, b, ,c Area s= 2 , area = s(s—a) s— ) (s—c <br />A, b, c Areaarea = b o sin A <br />2 <br />a? sin B sin C <br />�, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance = Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance=319.4ft. <br />tQ,pe Vert. angle= 60 101. From Table, Page IX. cos 50 101= <br />Pe ass m 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />o <br />S,Ve�•br�,e a distance distance <br />a oflverticalslope <br />angle). With <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />1. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft„ <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X '4-302.6-0.32=302.28 ft. <br />2 X 302.6 <br />rwe IN U. $.A. <br />