Laserfiche WebLink
3G, <br />1 <br />A 4 4f <br />3. <br />j� o y��3a Z 3o2U <br />1 �0 ' 1 /J 3 <br />r ri <br />ni d d/S'� <br />7Z <br />ij., <br />A L <br />` d9. 30 <br />d <br />�9 <br />Z 9j <br />aC <br />Zo,9.4 <br />1 V� Z,o q 4 G <br />,o9,97-. 3�nt�� k <br />qU <br />4 <br />TRIGONOMETRIC FORMUL)E <br />N y yt7 B / B <br />l � , <br />a a c a <br />37 A <br />b �b C, C <br />C —' <br />Right Triangle Oblique Triangles <br />( t Solution of Right Triangles <br />Angle A. sin= <br />a b a <br />For An l b c e <br />g cot = a , sec_ = b , cosec = — <br />I Given Required 7S %a <br />a,b A,B,c land=b=cotB,c= az+ 2=a 1+ s <br />�I� a <br />t li, a, c d B, 'b sin A = = cos B, b = \/ (c+a) (c—a) = c V 1— o <br />t A. a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />' A, b B, a, c B = 900—A, a = b tan A, c = cos A. <br />A., c B, a, b I B=90'—A, a = e, sin A, b = c cos A, <br />Solution of Oblique Triangles ` <br />j Given Required a sin B <br />!d, B, a b, c, C b sin d ' C = 180°—(A + B), c = sin A <br />b'sin d a sin C <br />'A, a, b B, .c, C in B = a , C = 180°—(A + B), c = sin A <br />a, b, C A,' B, c A+B=180°— C, tan (A—B)= (a—b) tan (A+B) <br />'ab ' <br />a sin C + <br />e <br />sin A <br />a, b, c .A, B, Cs:=a+b+c,,in;A= Y(s a(c <br />sin i B= a(•C c) C=180°—(A+B) <br />a, b, o 'Area s = a+2 +c, area <br />• t;A, b, e, Area b c sin A <br />area = 2' <br />a2 sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by'the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />oGe ass«ree Vert. angle= 50 101. From Table, Page IX. cos 50 Hy <br />9959. Horizontal distance=319.4X.9959=318.09 ft. <br />51 N41 94 a Horizontal distance also = Slope distance minus slope <br />ire t distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. ' <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 =30.6-0.32=302.28 ft. <br />2 X 302.6 <br />AWE IN U.S. a <br />