Laserfiche WebLink
/;10 <br />TRIGONOMETRIC FORMULAE <br />B B B <br />c a c a c' a <br />l g b C Afb C A b C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />a_ b a b c c <br />t. For Angle A, sin a , cos = a , tan = b , cot = a —,sec= b , cosec = — <br />a <br />Given Required <br />a,b A,B,c 'tan A=b=cotB,c= az+ s=a 1 +32 <br />)" a, c A, B, b sin A = o = cos B, b = %/ (c+a) (c—a) = c 1— o <br />A, a B, b, c B = 90°—A, b = a cot A, c.= a <br />sin A': <br />A, b B, a, c B=90°—A,a =.b tan A, c= b <br />cos A. <br />A, c B, a, b B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B, a b, c, C b' = in A , C = 180°—(A .+ B), a = s "in A <br />A, a, b B, c, C ein B = b sin A a sin C <br />a , C = 180°—(A + B), c = sin A <br />a, b, C A, B, c A+B=180°— C, tan 3 (A—B)= (a—b) tan 's (A+B) . <br />j a -sin C a+b <br />c = sin A <br />a, b, c A, B, C e=a+2+a,,in 'A=`I s G), <br />Bing —\ s a(c ) C=1800=(A+B) <br />a+b+e, <br />a, b, c Area s= 2 <br />A; b, c Area area •_ basin A <br />2 <br />az sin B sin C <br />1 A, B, C, a Area area = 2 sin A. <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />astaope Vert angle= 50 101. From Table, Page IX. cos 50 101= <br />9959. Horizontal distance=319.4X.9959=318.09 ft <br />So c, Arg1e = Horizontal distance also=Slone distance minus slope <br />Ve t. a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—tbe slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=302.6 ft Horizontal distance=3026— 14 X 14 _3n6-0.32=302.28 ft <br />2 X 3026 <br />MADE IN U."S. A. <br />.I <br />l� <br />TRIGONOMETRIC FORMULAE <br />B B B <br />c a c a c' a <br />l g b C Afb C A b C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />a_ b a b c c <br />t. For Angle A, sin a , cos = a , tan = b , cot = a —,sec= b , cosec = — <br />a <br />Given Required <br />a,b A,B,c 'tan A=b=cotB,c= az+ s=a 1 +32 <br />)" a, c A, B, b sin A = o = cos B, b = %/ (c+a) (c—a) = c 1— o <br />A, a B, b, c B = 90°—A, b = a cot A, c.= a <br />sin A': <br />A, b B, a, c B=90°—A,a =.b tan A, c= b <br />cos A. <br />A, c B, a, b B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B, a b, c, C b' = in A , C = 180°—(A .+ B), a = s "in A <br />A, a, b B, c, C ein B = b sin A a sin C <br />a , C = 180°—(A + B), c = sin A <br />a, b, C A, B, c A+B=180°— C, tan 3 (A—B)= (a—b) tan 's (A+B) . <br />j a -sin C a+b <br />c = sin A <br />a, b, c A, B, C e=a+2+a,,in 'A=`I s G), <br />Bing —\ s a(c ) C=1800=(A+B) <br />a+b+e, <br />a, b, c Area s= 2 <br />A; b, c Area area •_ basin A <br />2 <br />az sin B sin C <br />1 A, B, C, a Area area = 2 sin A. <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />astaope Vert angle= 50 101. From Table, Page IX. cos 50 101= <br />9959. Horizontal distance=319.4X.9959=318.09 ft <br />So c, Arg1e = Horizontal distance also=Slone distance minus slope <br />Ve t. a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—tbe slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=302.6 ft Horizontal distance=3026— 14 X 14 _3n6-0.32=302.28 ft <br />2 X 3026 <br />MADE IN U."S. A. <br />.I <br />