Laserfiche WebLink
r. <br />+ ` ' TRIGONOMETRIC FORMULAE d• <br />B B <br />75 <br />� r <br />jA C <br />Right Tiie�gle Oblique Triangles <br />Solution of Right Triangles <br />\ � r b_ a b c <br />s <br />For Angle;, cos ,tan = -b ,cot = — ,sec = —, cosec = <br />c a b a <br />1 - Given <br />Z - <br />f <br />4 <br />a,b <br />A,B,c' <br />tsnA=b=cotB,c= aE+ 2=a 1 E - <br />az <br />3�9 �. J(9 <br />a, c <br />A, B, b <br />sin A = G = cos B, b = \/ — a (c+a) (ca) = c 1= 2 <br />L <br />A, a <br />,- <br />B„b, c <br />a <br />B=90°—A, b= acotA,"c= <br />' <br />sin A. <br />6 ¢ <br />A, b <br />B, a, c <br />B = 90°—A, a = b tan A, c = b <br />cos A. <br />G <br />} <br />- A, c <br />B, a, b I <br />B = 900—A, a = c sin A, b = c cos A, <br />b ` Solution of Oblique Triangles <br />o f <br />Given <br />Required <br />B a a sin C <br />A, B,a <br />b, c, C <br />_sin ° <br />b <br />A'C=180—(A+B),c= <br />l7 d� <br />A,a,b <br />B,c,C <br />sin sin <br />b sin Aa sin C <br />sin B= a ,C=180—(A+B),c= <br />sin <br />A B— a (a—b) tan (A+B) <br />+ -180 — C, tan , (A—B)= <br />to+b , <br />a C <br />sin <br />e— <br />sin A <br />- <br />a+b+c <br />a, b, c <br />A, B, C <br />;A_ �(a) <br />s— 2 ,sin \ b c ' <br />(s—a)(s--o) <br />sin jB= `� a c C=180°—(A+B) <br />C� 7 <br />.r <br />'a, b, o <br />Area <br />a+b+c <br />s= , area = 1/s(s—a (s— ) (s—c <br />2 <br />, b e. <br />- <br />Area <br />b0Rio A <br />area = 2 r� <br />as sin B sin C <br />- <br />A,B, C,a <br />Area <br />area = 2 sin A <br />REDUCTION <br />TO HORIZONTAL <br />tt <br />Horizontal 'distance= Slope distance multiplied by the <br />^^ <br />taoce <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Vert. angle =5° 10+. From Table, Page IX. cos 50 10+= <br />5� 000 <br />ass <br />q 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />a Horizontal distance also=Slope distance minus slope <br />MILO <br />distance times (1—cosine of vertical angle). With the <br />ve <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />ing result is obtained. Cosine 50 10+=.9959.1—.9959=.0041. <br />Y 319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 <br />ft. <br />Horizontal distance=302.6— 14 X 14 ==6--0.32=302.28 ft. <br />2 X 3026 <br />v <br />MADE IN U.S.A. <br />