Laserfiche WebLink
�'�6 z7 <br />3 <br />4 0, 6 <br />40, 41 <br />4y�b <br />I 1ST % Z <br />oL $679 <br />CC'/ 12 Sz <br />Oz <br />jl ts0�(�OOn 9 � )ILdG '� <br />T t, I k <br />4°•°� <br />r <br />go,ab. <br />t A, B, C, a Area area = <br />2 sin A <br />40.06 <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />- <br />cosine of the vertical angle. Thus: slope distance=319.4ft. <br />40,06 <br />9 6, <br />45, a0 <br />aoee <br />aj5t d Horizontal distance=319.4X.9959=318.09 ft. <br />9959. <br />= <br />r�1CIAg1e Horizontal distance also = Slone distance minus slope <br />Ar tt <br />distance times (1—cosine of vertical angle). With the <br />�1e <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5'101=.9959.1 .9959=.0041. <br />7� <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the orizontal distance is approximately:—the slope dist- <br />h <br />TRIGONOMETRIC FORMULAE <br />B B B <br />a ° a ° a <br />A ^ <br />A <br />b C �b Cl C <br />Right Triangle Oblique Tiiangles —°�� <br />Solution of Right Triangles <br />'For Angle A. sin= a b a ,cot = b ,sec = a , cosec = c <br />c c b a b a <br />- Given Required a x <br />a,b A,B,c tanA=b=cotB,c= a2+ 2=a 1+ a2 <br />I; a, e A, B, b sin A = c = cos B, b = (c+ a) (c—a) = c 1-- <br />o <br />A, a B, b, c B=90°—A, b = a cotA, c= a <br />sin A. <br />A, b B, a, e B = 90°—A, a = b tan A, c = b <br />cos A. <br />A, e B, a, b B = 90°—A, a = e sin A, b= e cos A, <br />Solution of Oblique Triangles <br />Given Required _ a sin B ° a sin C <br />A, B'a b, c, C b sin A'C=180—(A } B),c= sin <br />b sin Aa sin C <br />A, a, b., B, c; C sin B= a ,C = 180°—(A + B), c = sin A <br />o, b, C A, B, c' ' A+B-180°— C, tan z (A—B)=(a—b) tan s (A+B) , a + b - <br />a sin C <br />sin A <br />c <br />a, b, a A, B, C s= a+b+2 be <br />be ' <br />sin5BB=,Ni(3—a)( ),C=180°—(A+B) <br />E "> ac <br />a+b+c O <br />C a, b, a Area s`e arta =V/8(8 --T(8— (8—c <br />bcsin A <br />A, b, . Area area.==, �Z _ i <br />i a2 sin B sim'►C <br />t A, B, C, a Area area = <br />2 sin A <br />\ \ 9a <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />- <br />cosine of the vertical angle. Thus: slope distance=319.4ft. <br />i Vert. angle=50 101. From Table, Page IX. cos b° 101= <br />aoee <br />aj5t d Horizontal distance=319.4X.9959=318.09 ft. <br />9959. <br />= <br />r�1CIAg1e Horizontal distance also = Slone distance minus slope <br />Ar tt <br />distance times (1—cosine of vertical angle). With the <br />�1e <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5'101=.9959.1 .9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the orizontal distance is approximately:—the slope dist- <br />h <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=3026 ft. Horizontal distance=3026— 14 X 14 _SM6-0.32=302.28 ft.' <br />2 X 802.6 <br />MADE IN U. S. A. <br />