Laserfiche WebLink
TRIGONOMETRIC FORMUL S <br />B B B <br />c <br />� c a' c a a <br />b <br />AC <br />Cb CA b � <br />{ Right Triangle Oblique Triangles <br />Solution of Right 'triangles . <br />a b a b c c <br />For Angle A. sin=. ,cos= c ,tan= b , cot= a , sec = b, cosec'= a <br />Given Required a <br />a,b A,B,c ton A=b=cotB,c= az+bl=a 1+a2 <br />z <br />a, c A, B, b sin A = a = cos B, b = \1(c+a) (c—a) = c J 1_L i . <br />i c <br />a <br />A,.a B, b,'c B=90°—A,.b = acotA,c =sin A. <br />A, b B, a, e B = 90°—A, a = b tan A, e = cos A. <br />( A, c B, a, b B = 90°—A, a = c sin A, b = c cos A , <br />Solution of Oblique Triangles <br />Given Required <br />A, B, a b, c, C b — a sin B � C = 180°—(A + B), c = a sin C <br />sin A sin A <br />b sin A a sin C <br />1 A, B, c, C sin B = a , C = 180'—(A + B), c = sin A <br />a, b, C A, B, c A+B=180°— C, tan a (A—B)= (a—b) tan a +B) <br />asinC a+b <br />' <br />sin A <br />ABC s = 2 in2'A= b c , <br />I sin2B=�(s—aa(a c),C=180°—(A-+"B) <br />1 a, b, c Area s = a i 2 c , area = s (s—a (s—b) (s—c) <br />A, b, c Area area = b c sin A <br />2 <br />a2 sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance = Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />taoce Vert. angle=5° 101. From Table, Page IX. cos 5'10/= <br />a�5 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />r��o4e "e Horizontal distance also = Slope distance minus slope <br />Vel distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31-319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />_ <br />slope distance=302.6 ft. Horizontal distance=302.6— 14X14 —302.6-0.32=302.28 ft. <br />2 X 302.6 <br />t MADE W u. e. N. <br />L <br />z S <br />� <br />3� <br />� 7 <br />TRIGONOMETRIC FORMUL S <br />B B B <br />c <br />� c a' c a a <br />b <br />AC <br />Cb CA b � <br />{ Right Triangle Oblique Triangles <br />Solution of Right 'triangles . <br />a b a b c c <br />For Angle A. sin=. ,cos= c ,tan= b , cot= a , sec = b, cosec'= a <br />Given Required a <br />a,b A,B,c ton A=b=cotB,c= az+bl=a 1+a2 <br />z <br />a, c A, B, b sin A = a = cos B, b = \1(c+a) (c—a) = c J 1_L i . <br />i c <br />a <br />A,.a B, b,'c B=90°—A,.b = acotA,c =sin A. <br />A, b B, a, e B = 90°—A, a = b tan A, e = cos A. <br />( A, c B, a, b B = 90°—A, a = c sin A, b = c cos A , <br />Solution of Oblique Triangles <br />Given Required <br />A, B, a b, c, C b — a sin B � C = 180°—(A + B), c = a sin C <br />sin A sin A <br />b sin A a sin C <br />1 A, B, c, C sin B = a , C = 180'—(A + B), c = sin A <br />a, b, C A, B, c A+B=180°— C, tan a (A—B)= (a—b) tan a +B) <br />asinC a+b <br />' <br />sin A <br />ABC s = 2 in2'A= b c , <br />I sin2B=�(s—aa(a c),C=180°—(A-+"B) <br />1 a, b, c Area s = a i 2 c , area = s (s—a (s—b) (s—c) <br />A, b, c Area area = b c sin A <br />2 <br />a2 sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance = Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />taoce Vert. angle=5° 101. From Table, Page IX. cos 5'10/= <br />a�5 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />r��o4e "e Horizontal distance also = Slope distance minus slope <br />Vel distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31-319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />_ <br />slope distance=302.6 ft. Horizontal distance=302.6— 14X14 —302.6-0.32=302.28 ft. <br />2 X 302.6 <br />t MADE W u. e. N. <br />L <br />