Laserfiche WebLink
L <br />g,Z24- 0 0 <br />7, 7- <br />j <br />TRIGONOMETRIC FORMUL& <br />B <br />B <br />ac a a <br />b b C C, <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle'14. Sin = a , cos tan= a T , cot = b , sec cosec <br />' ' 0 a 7 <br />Given Required ¢ <br />a, b A, B,c <br />tan A =a cot B, o = V a2+ 2 a+ 7a- <br />4, o. A, B, b sin = 7—a2 <br />irt: I a <br />A, a B, b, r B=90°—A, b = a cotA, 0= <br />sin A. <br />3. b <br />A, b B, a, C B=90'—A, a = b tan A, c = — <br />c.. A. <br />A, c B, a, b. B=90'—A, a = esinA, b= ecosA, <br />Given': Required Solution - of. Oblique Triangles <br />asin B <br />C , C = 180'—(A + B), <br />A, B, a b, c, b <br />3. sin A sin A <br />a sin C <br />1_7 A, a, b B, c, C sin B 0'= 180*—(A + B), c = sin A <br />—C,tan (a—b) tan 11 (A+B) <br />C A, B, 0 A+B= 180' n I (A�B)= + b <br />a sin C <br />Sin -A <br />a+b+ <br />a, b, a A, B, C 8= 'sin 21A= <br />2 N b c <br />sin B— C 800--(A+B) <br />-\ —ac <br />b —_ (-- <br />a, b, a Area S=a+2+c N/T(,—aT .,— Y) <br />in A <br />A, b, c Areab*c s <br />* <br />2 <br />a2 sin B sin C <br />A,B,Ca Area 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />or � <br />Vert. <br />'co Ve aqngle = 50 101. From Table, Page JX. cos 50 101= <br />661's1% 0) .9959. Horizontal distance�319AX.9959=318.09 ft. <br />e IS , — <br />K glop <br />4 Horizontal distance also=Slope distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31-319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6ft. Horizontal distance --.302.6— 14 X 14 =302.6-0.32=302.28& <br />2 X 30.6 <br />RADE IN U.S.A. <br />