Laserfiche WebLink
TRIGONOMETRIC FORMUL& <br />tI <br />i3 B B <br />4 ° a ° a c a <br />g' b b, C A b C <br />C <br />I Right Triangle Oblique 'Triangles <br />Solution of Right -Triangles <br />For Angle'A, sin = , cos = , tan = b , cot = a , sec = b , cosec = <br />Given Required a 2 <br />a, b A,. B ,c tan A = b = cot B, c = -} a2 a = a 1 + r <br />a, c' A, B, b sinal = a =cosB, b= c a c—a as <br />02 <br />a B, b, c B=90°—A; b= a cotA, c= a <br />sin A. <br />A, b B, a, c B=90°—A,a = btanA, c= b <br />cos A. <br />A, e, B, a, b B = 90°—A, a = e sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin Ba sin C <br />4, B, a b, c, C b = sin A ' C = 1800—(A + B), c = sin A <br />b sin Aa in C <br />A, a, b B, c, C ' sin B = - a , C = 180°—(A + B), c = sin <br />a, b, C A, B, c A+B=1800— C, tan i (A—B)= (a—b) tan -.i-. (A+B)� <br />a F b <br />a sin C <br />sin A <br />a+b+c <br />a, b, c A, B, C s= 2 ,sinlA= be ' <br />—a)(s—c <br />— <br />sin zB=� sC=180°(A+B) <br />ac <br />a+b+ <br />c Area s= 2 , area =s(s—a) s— ) (s—c <br />` A, b, c Area area = b e sin A <br />a' sin B sin C <br />B, C, a Area . area = 2' sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />i <br />ce cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />NoVert. angle= 50 101. From Table, Page IX. cos 50 101= <br />qo ass y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />S�0O An��e a Horizontal distance also=Slope distance minus slope <br />( Ve �. distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance . ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: ,rise=l4 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 =3026-0.32=302.28 ft. <br />2 X 3026 <br />WADE IN <br />i <br />t <br />TRIGONOMETRIC FORMUL& <br />tI <br />i3 B B <br />4 ° a ° a c a <br />g' b b, C A b C <br />C <br />I Right Triangle Oblique 'Triangles <br />Solution of Right -Triangles <br />For Angle'A, sin = , cos = , tan = b , cot = a , sec = b , cosec = <br />Given Required a 2 <br />a, b A,. B ,c tan A = b = cot B, c = -} a2 a = a 1 + r <br />a, c' A, B, b sinal = a =cosB, b= c a c—a as <br />02 <br />a B, b, c B=90°—A; b= a cotA, c= a <br />sin A. <br />A, b B, a, c B=90°—A,a = btanA, c= b <br />cos A. <br />A, e, B, a, b B = 90°—A, a = e sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin Ba sin C <br />4, B, a b, c, C b = sin A ' C = 1800—(A + B), c = sin A <br />b sin Aa in C <br />A, a, b B, c, C ' sin B = - a , C = 180°—(A + B), c = sin <br />a, b, C A, B, c A+B=1800— C, tan i (A—B)= (a—b) tan -.i-. (A+B)� <br />a F b <br />a sin C <br />sin A <br />a+b+c <br />a, b, c A, B, C s= 2 ,sinlA= be ' <br />—a)(s—c <br />— <br />sin zB=� sC=180°(A+B) <br />ac <br />a+b+ <br />c Area s= 2 , area =s(s—a) s— ) (s—c <br />` A, b, c Area area = b e sin A <br />a' sin B sin C <br />B, C, a Area . area = 2' sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />i <br />ce cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />NoVert. angle= 50 101. From Table, Page IX. cos 50 101= <br />qo ass y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />S�0O An��e a Horizontal distance also=Slope distance minus slope <br />( Ve �. distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance . ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: ,rise=l4 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 =3026-0.32=302.28 ft. <br />2 X 3026 <br />WADE IN <br />i <br />