Laserfiche WebLink
� �.0 3 3 <br />a - a 0a <br />a 003 .3 O y� 7965 <br />sap4 40 <br />• � )� 1 S—� 3 � D l/I � d/d000 <br />r :Z1100 0 <br />, <br />?S 2J <br />p `1 7.4. <br />-6 3S.000aB,o <br />5-6 <br />U � V 498280 <br />r' <br />r <br />33, aZ <br />n� o; 3. <br />II D v o c� ha 0 <br />O <br />os TRIGONOMETRIC FORMULAE <br />B B <br />c a c a c a <br />d <br />AA C <br />b Cb Cb � <br />. Right Triangle, .. ; Oblique Triangles <br />Solution of Right Triangles <br />a b a b c c <br />For.Angle A. sin = c , cos = c , tan= b , cot= a , sec = b , cosec = <br />a <br />"Given, Required L 2 <br />a,b A,B,c tanA=b=cotB,c= a2+b2=a 1 { az <br />a, c._ . . A, B, b sin A = a = cos B, b = V (o+a) (c—a) = e 1— ao2 <br />A,.a B, b, c B=90°—A, b = acotA,c= a <br />sin A. <br />A;•b•:• B, a, e B=90°—A,a = btan A,a= b <br />cos A. <br />'A;'a.' B, a, b B=90°—A,a=esin A,b=ccos A, <br />Solution of Oblique Triangles <br />Given Required <br />a sin B a sin C <br />A, . B, a b, c, C b = sin A ' C = 180°—(A { B), c = sin A <br />b sin A a sin C <br />A, a, b B, e, C sin B = a , G = 180°—(A { B), c = sin A <br />a, b, C A, B, c A+B=180°= C, tan a (A—B), (a—.b)tan 11(A -}-B), <br />a + b <br />a sin C <br />c =_ <br />• '' sin A <br />ai b+c V(s_b <br />a, b, a A, B, C s= 2 ,sin ;A—= be <br />' <br />sin aB= `I(s a c ),C=180°—(A+B) <br />a, by a Area s= 2 a+b-1-c , area = s(s—a s—b) (sc) <br />A, b, c Areab c sin A <br />area = 2 <br />a2 sin B sin C <br />i A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />icosine of the vertical angle. Thus: slope distance =319.4 ft. <br />. `arca Vert. angle =5° 101. From Table, Page IX. cos 50 101= <br />e ass y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />CoAn�1e Horizontal distance also =Slope distance minus slope <br />distance times (1—cosine of vertical angle). With the o <br />same fikures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 51 101=.9959.1=.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =3026-0.32=302.28 ft. <br />2 X 302.6 <br />Mune w U. e. A. <br />A <br />