Laserfiche WebLink
. )I <br />TRIGONOMETRIC FORMUUE <br />B <br />a a a <br />�4 A . b C A b C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />aw <br />`For Angle A. sin:' ,cos = tan= cota see cosec <br />Given Required. 2 <br />b <br />'A B,C tan Ab cot B, c a <br />+ <br />az <br />q, c '-4B, b sin A =- a =cosB,b=V(c+a)(c._—_a)=C —a,— <br />OS <br />A, a B, b, c B=90 --A, b= acotA, c= asin A. <br />b <br />A b B, a, c B=90'—A, a = b tan A, c <br />c.. A. <br />A, a B, a, b I B=90'—A, a = c sin A, b= e cos A, <br />Solution of Oblique Triangles <br />Given Required- asinBasin U <br />A, B, a 0 b = , C = 180°—(A +B), C = <br />sin A sin A <br />-sin B = , b sin AC 180'—(A + B), c = a sin <br />A, a, b B;1c,­ a sin A <br />(a—b) tan !'j (A+B) <br />b, C -A, B, C A+B=180*—C, tan !,(A—B)= d + b <br />a sin C <br />sin A <br />+b + b)8) <br />a, b, a A, B, C 8=a 2 ,in -2A=�(8— —0 <br />b(c <br />sin 1B— a o C=1800—(A+B) <br />b, c Area s— 2 a -'-b+ , area'= (8— �J(8_c <br />b o sin A <br />A, b, el Area 2 <br />as sin B sin C <br />B, C, a Area, area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />'ce cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />11), "'r, Vert. angle = 51 101. From Table, Page IX. cos 50 I(V= <br />elt a) M59. Horizontal d!stance=3l13.4X.!)959=3l8.Mft. <br />SoVe <br />all .�2 diHorizontal distance also=Slove distance minus �ope <br />stance times (1—cosine of vertical angle). Withlthe <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine -51 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1,31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />anci less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302-6 ft. Horizontal distance=302.6— 14 X 14 =3016-0.32=802.28 M <br />2 X 302.6 <br />JL- <br />MADE IN U. LA. <br />