Laserfiche WebLink
CURVE TABLES. <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a 1°curve. Tan. and <br />Ext. to any other radius maybe found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =230 20' to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />120.87--12=10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23° 20'=1183.1 <br />1183.1=10 =118.31. <br />Correction for A. 230 20' for a 10° Cur. =0.16 <br />118.31-{-0.16 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang.23°20'=23.33 =10=2.3333=L. C. <br />2° 19','= def. for sta. 542 I. P.=sta. 542+72 <br />40 49"_ " it « -}-50 Tan. = 1 .18.47 <br />70 19;' _ " " 543 <br />= " `° « B. C.=sta, 541-{-53.53 <br />9°49,' <br />11° 40' _ " " 543+ <br />L' C' = 2 .33.33 <br />86.86 E. C. =Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.) =139.41'= <br />2° 1912'=def. for sta. 542. <br />Def. for 50 ft. =2° 30' for a 10° Curve. <br />Def. for 36.86 ft. =1° 50;' for a 10° Curve. <br />' <br />�I/1�� <br />�Iti�►S���II <br />CURVE TABLES. <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a 1°curve. Tan. and <br />Ext. to any other radius maybe found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =230 20' to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />120.87--12=10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23° 20'=1183.1 <br />1183.1=10 =118.31. <br />Correction for A. 230 20' for a 10° Cur. =0.16 <br />118.31-{-0.16 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang.23°20'=23.33 =10=2.3333=L. C. <br />2° 19','= def. for sta. 542 I. P.=sta. 542+72 <br />40 49"_ " it « -}-50 Tan. = 1 .18.47 <br />70 19;' _ " " 543 <br />= " `° « B. C.=sta, 541-{-53.53 <br />9°49,' <br />11° 40' _ " " 543+ <br />L' C' = 2 .33.33 <br />86.86 E. C. =Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.) =139.41'= <br />2° 1912'=def. for sta. 542. <br />Def. for 50 ft. =2° 30' for a 10° Curve. <br />Def. for 36.86 ft. =1° 50;' for a 10° Curve. <br />