Laserfiche WebLink
B <br />TRIGONOMETRIC FORMULAE I <br />3, B B <br />c a ° a c a <br />5 <br />A b C A�b C d C <br />Right Triangle Oblique Triangles �� <br />Solution of Right 'Triangles <br />For Angle A. sin = a , cos = c b , tan= a , cot = b a , sec = b a , cosec = o <br />c b a <br />Given Requireda <br />a, b A, B ,c tan A = b =cot B, c = a2 -+b2 = a 1 + az <br />a, c A, B, b 1_2L s <br />A, a B, b, e B=90°—A, b = a cot A, c= a - <br />sin A. <br />A, b B, a, c B = 90°—A, a = b tan A, c = b <br />cos A, <br />A, r. B, a, b I B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required _ a sin B <br />A, B, a. b, c, b sin A , C = 180°—(A + B), c = sin A <br />A, a, b ' B, c, C sin B = a b sin A, C = 180°—(A { B), c = a sin C <br />sin A <br />1 (a—b) tan z (A+:q) <br />- a, b, C A, B, c - A-}-8=180 � C, tan 2 (A—B)= a + b , <br />c= <br />a sinC <br />sin A <br />a, b, c A, B, C s=a+2+c,,in aA= V (s--b(c—c r <br />�—c <br />sinzB= (4—a)(S ,C=180°—(A+B) <br />ac <br />a, b, c Area s=a+2+c, <br />A, b, c Area area = b e sin A <br />2 <br />az sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />farce Vert. angle =5° 101. From Table, Page IX. cos 5° 10- <br />e aj5 9959. Horizontal distance -319.4X.9959=318.09 ft. <br />Horizoslope t. An,c C4 distance timesal (1 distance cosine oflvertical a angle)nce . With niis lthe <br />v same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 10'=.9959.1—.9959=.0041. <br />319.4X.0041=1.31-319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =392 6-0.32=302.28 ft <br />2 X 302.6 <br />MADE W u. s. A. <br />