Laserfiche WebLink
TRIGONOMETRIC F.ORMUL& l <br />B B B <br />a <br />r <br />Right Triangle Oblique .Triangles. <br />j Solution of Right Triangles' <br />), For Angle A. sin= a cos =- b ,. tan = a , cot = b , sec = cosec = a 5 <br />a b., a <br />! Given Required <br />a2 <br />a,b A,B,c tanA=b=cotB,c= a2 a=a '1-f <br />2 <br />o A, B, b sin A = a = cos B, b = as <br />A, - a B, b, c B=90°—A, b= a cotA, o= a _ <br />sin A. <br />A, b-- B, a, a B= 90°—A a= b tan A, c= b <br />cos A. <br />A, c B, a, b B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required <br />A, B,a b, c, C b= snA'C=180°—(A+B),c= sin <br />b sin A a sin C <br />A, a, b- B, e, C sin B=, a ,C = 1800—(A (B), e = sin A <br />a, b, C A, B, c A+B--180°— C, tan 2' (A—B)- (a—b) tan z (A+B)� <br />_asin C a+b <br />c <br />sin A ' <br />a -b f o I(s— b)(s—c) <br />a, b, c A, B, C s=2 ,sin' -,A=., b c ' <br />sin %B=l(s—a)(c ) , C= 180°—(� +B) <br />a, b, c. Area 8=a+2+e,.area <br />• A, b, c Area area = besin A 2 <br />aE sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Y Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />�aoce Vert. angle=51101. From Table, Page IX. cos 50101= <br />e als y 9959. Horizontal distance -319.4X.9959=318.09 ft. <br />sop 11191 distancHorizoe timest(lcco (1—cosine oflvertcal angle).minus <br />Withlthe <br />ve same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 10f=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft.. <br />slope distance=302.6 ft.' Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />MADE IN U. B. A. <br />