Laserfiche WebLink
.f J{ � <br />TRIGONOMETRIC FORMULtE <br />LrB •v d C <br />07-Q ,. ,� ;� Right.Triangle 'I-- I��• Oblique Triangles <br />Solution'of Right Triangles <br />' a, b a b c a <br />` For Angle A. sib =-`a ,cos = , tsn =b , cot =, a ,sec.= b , cosec = a <br />i c <br />Given' 'Required a Y <br />�'. •(� - -' �} j a, b A, B ,6 tan A = - = cot B, c = a + z = a 1 + -- <br />p I b a2 <br />Vj <br />A> B, b sin A = c = cos B, b = \l(i+a) <br />A, -o: - :'.B, b, c` a <br />�✓ � 1J u•• B=90°—A,b=acot A,c= <br />sin A. <br />A, b B, a, c B = 90°—A, a = b tan A, c = b <br />cos A. <br />A, c B, a, b B = 90° <br />f —A, a = c sin A, b= c cos A, <br />}' J 7 L Solution of Oblique Triangles <br />�C C',. x. Given Required a sin B <br />_ <br />� - �_ r, - 4, S A, B, a b, c, C b :- , C = 180°—(A -}- B), a = a sin C <br />sin A sin A <br />b sin A a sin C <br />r - ,� � jj <br />} A, _a, b B, c,. C sin B = a , C = 1'80 (d } B) , c = <br />to I„-. N.. � - , � . ,� sin A <br />Q M` Q� � 6 % a, b, C A, B, c A+B=180°— C, tan z (A—B)= (a—b) tan (A+B) <br />a ' <br />a, _ _asin C <br />tj t a sin A <br />? i%lel� a, b, a A, B, C s= 2 a+b+0,sin'-A= As (s0) <br />�( ' be ' <br />t" ZJI siniB=N(s a(� ),C'=180°-{A+B) <br />�•) d �'a+b+c <br />a, b, c Area <br />V . s= 2 ,area s— (s—c <br />G ty <br />q D 2 A, b, c Area area = b c sA �? 3 % <br />1 A, B, C, a Area as sin B sin <br />area = 2 sin A <br />t <br />1- <br />%0��, REDUCTION TO HORIZONTAL' <br />Horizontal distance = Slope distance multiplied by the Z cosine of the vertical angle. Thus: slopedistance =319.4ft. <br />a�s11er Vert. angle= 51 101. From Table, Page IX. cos 51 10!= <br />e 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />H <br />- glop Angle a Horizontal distance also= Slope distance minus slope <br />4 p Ve distance times (1—cosi4e of vertical angle). With the <br />samefigures as in the preceding example, the follow- <br />j 67 Horizontal distance ing result is obtained. Cosine 5'101=.9959.l—.9959=.004l. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />al <br />ist- ' <br />aace less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />�vb 14X14— <br />�7 slope distance=302.6 ft. Horizontal distance=3026— =302:6-0.32=30228 ft. <br />2 X 302.6 <br />�1 �"' MADE IN U. 8. A. <br />