Laserfiche WebLink
30 <br />�7 <br />8 �9- <br />a <br />8 x,40 <br />M <br />�TRIGOI'VOMETRIC FORMULIE p <br />B B: <br />a c a c <br />a <br />2 <br />�b C A�b C A b C <br />Right Trianile Oblique Triangles J <br />`';Solution of Right Triangles <br />For• Angle A. sing= o ,cos = b. ,tan = b ,cot = a sec = b ; cosec= a <br />Given Required a 2 <br />a,b A, B,6' tan A=b=cotB,c= a2=a l+as <br />a, a A, B, b� sin A = C = cos B, b = \/ (c+a) (c—a) = c 1— a, <br />A, a B, b, c B=90°—A, b= acotA, c= a Y <br />sin A. <br />A, b <br />B, a, c <br />B = 90°—A, a = b tan A, c — b <br />COs A. <br />A, c <br />B, a,. b <br />B = 90°—A, a = c sin A, b = c. cos A, <br />Solution of Oblique Triangles <br />Given- <br />Required <br />A, B, a <br />b, c, .0 <br />b , C = 180°—(A + B), c = <br />sin -A sin A <br />A, a, V <br />B, c; C <br />b sin Aa sin C <br />sin B = , 6 = 180°—(A + B) , c — <br />a sin A <br />a, b, C <br />A, B, c <br />(A—B)= (a—b) tan z +B) <br />A+B=180°— C; tan 1.a <br />-}- b <br />b <br />a sin C <br />c= <br />sin A <br />a, b, c <br />A B, C <br />s=a+2+c,,in!A=��s— b(C <br />sin?B= (8—)(S—),a C=180°—(A+B) <br />a, b, a, <br />Area <br />8=a+2+c, area =s(s—a (s— ) (s—c <br />A, b, c <br />Areab <br />C sin A <br />area = <br />2' <br />aQ sin B sin C <br />A, B, C, a <br />Area <br />area = <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance = Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />a�stQoce <br />Page JX. Cos b° 101= <br />e <br />'Ie <br />y99 9. Horizontal distance 319 4X.995 3 8.09 ft <br />glop <br />a Horizontal distance also=Slone distance minus slope <br />Ve <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />ing result is obtained. Cosine 5° 101=.9959.l--9959=-0041- <br />01=.9959.1—.9959=.0041.319.4X.0041=1.31.319.4-1.31=318.09 <br />319.4X.0041=1.31.319.4-1.31=318.09ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. <br />Horizontal distance=3026— 14 X 14 =302.6—O.'32=302.28 ft. <br />2X3026 <br />WOE IM U. 6. A. <br />u <br />