Laserfiche WebLink
VIII <br />TABLE IL - Radii, Ordinates and Deflections. Chord =100 ft. <br />Deg'' <br />'liadius <br />Mid. <br />Ord. - <br />Tau <br />Dist.. <br />Def. <br />Dist. <br />De' <br />for <br />1 Ft <br />Deg. <br />g <br />Radius <br />Mid. <br />Ord. <br />Tan <br />Dist. <br />Def. <br />Dist. <br />Def. <br />for <br />1 Ft. <br />0'10' <br />34377. - <br />.036 <br />'.145 <br />291 <br />0.05 <br />7° <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189c, <br />.073.291 <br />3° 21' <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459.- <br />.109 <br />.436 <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />8594.4 <br />.145 <br />.582, <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />13.37 <br />2.30 <br />-50 <br />6875.5 <br />" .182 <br />.727, <br />1.454 <br />0.25 <br />8. .. <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1' " - <br />5729.6.218 <br />20 55' <br />.873 <br />1:745 <br />0.30 <br />20. <br />688.2 <br />1.819 <br />.7.266 <br />14.53 <br />2.50 <br />10 <br />4911.2 <br />:255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />'7.411 <br />14:82 <br />2.55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15:11 <br />2.60 <br />30. <br />3819.8 <br />:.327 <br />1:309 <br />2:618 <br />0.45 <br />9 <br />637:3 <br />1.965 <br />'7.846.15:69 <br />51' 44' <br />2.70 <br />40, <br />3437.9 <br />;.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2037. <br />8.136 <br />16:27 <br />2.80 <br />50 <br />' 3125.4 <br />'.400 <br />1.600, <br />-3.200 <br />0.,55 <br />30 <br />603.8 <br />2.074 <br />8.281'16.56 <br />2.85 <br />2 <br />2864':9 <br />,.436 <br />1.745 <br />.3.490 <br />0.60 <br />" 40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644:6 <br />.473 <br />1.891 <br />3.781 <br />0.65 <br />10' <br />573.7 <br />2:183' <br />8.716 <br />17.43 <br />3.00 <br />- 20 <br />2455.7 <br />` .509 <br />2.036 <br />'4:072 <br />0.70 <br />30 <br />546.4 <br />2.292,9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />'9.585 <br />19:16 <br />3.30 <br />40" <br />2148.8 <br />;.582 <br />2.327 <br />4.654 <br />0.80, <br />. 30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50. <br />2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />12 • <br />478.3 <br />2:620 <br />10.4520:91 <br />3.60 <br />3 • <br />1910.1 <br />.655 <br />2.618 <br />5:235 <br />0.90 <br />30` <br />459.3 <br />2.730 <br />10.89: <br />21.77 <br />3.75 <br />10 <br />, 1809.6.691 <br />2.763 <br />.'5.526 <br />0.95. <br />13 <br />441.7 <br />2.839. <br />11:32. <br />22.6'4 <br />3.90 <br />20 <br />1719,.1. <br />.727 <br />2.908 <br />5.817 <br />1.00.E <br />30.. <br />425.4 <br />2:949-11.75 <br />23.51 <br />4.05 <br />30 <br />1637,3 <br />'.764 <br />3.054 <br />6.108 <br />1.05. <br />14 •' <br />410.3 <br />3.058 <br />12.18, <br />24:37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25:24 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />6.689 <br />1:15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />4 • <br />1432.7 <br />'.873 <br />3.490 <br />'6.980 <br />1.20 <br />30 <br />370.8 <br />3:387 <br />13.49 <br />26.97 <br />4.65 <br />10, <br />1375.4 <br />:.909 <br />3.635' <br />'7.271 <br />1.25-- <br />161 •' <br />359.3 <br />3.496 <br />13.92 <br />27:84 <br />4.80 <br />20 <br />1322;5 <br />.945 <br />3.718' <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28:70.4.95 <br />30'•1273.6 <br />'.982 <br />3.926 <br />7.852 <br />1.35• <br />17 <br />338.3 <br />3..716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1:018 <br />4.071; <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />$:433 <br />1.45 <br />-19 - <br />302.9 <br />4.155 <br />16.51 '33.01 <br />5.70 <br />5 <br />1146.3 <br />1.091 <br />4.362, <br />8.724 <br />1.50 <br />20- <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />10: <br />1109.3 <br />1:127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />18.22 <br />36.44 <br />6.30 <br />20 <br />1074.7 <br />1:164 <br />4'.653 <br />'9:305 <br />'9.596 <br />1.60, <br />-22 <br />262.0 <br />4'.814 <br />19.08 <br />38:16 <br />6'.60 <br />30' <br />1042.1 <br />1.200 <br />4.798 <br />1.65 <br />'23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1011:5 <br />1'237 <br />'4.943 <br />9.886 <br />1•-70' <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50' <br />982.6 <br />..273 <br />1' <br />5.088 <br />10.18 <br />1.75, <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />6 <br />'955.4 <br />1.309 <br />V'234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.697 <br />22.50 .44.99 <br />7.80 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />P.918 <br />23.35 <br />46:69 <br />8.10 <br />20 <br />905.1 <br />1:382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206. 713 <br />24.19 <br />48:38 <br />8.40 <br />30 <br />1881.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7.6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />;859.9 <br />1:455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51:76 <br />9.00 <br />The middle ordinate•u inches for any cord of length (0) is equaLto .0012 C' <br />multiplied by the middle ordinate taken from the above table. Thus; if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X900X2.183 or 2.36 inches. <br />TABLE III. Deflections'for Sub Chords for Short Radius Curves. <br />De� ree <br />Curve <br />Radius <br />SOus <br />3a sub chord _ sin of I def. angle <br />Length <br />of arc <br />for 100 ft. <br />sin. a def. ang. <br />12.5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />30' <br />193.18 <br />10'51' <br />2° 17 <br />2° 58 <br />30 43' <br />101.15 <br />'32*' <br />.. 181:39. <br />1 59 .. <br />2 2 <br />10 <br />.7000 <br />„.33... <br />340 <br />171.01 <br />2°'o6' <br />2° 33' <br />3° 21' <br />4° 12' <br />101.48 <br />36° <br />161;.80 ' <br />- 2° �3 <br />2° 41, <br />3° 33' <br />4° 26' .. <br />,ioi.66 <br />38° <br />153.58 <br />2° 20' <br />2° 49 <br />3° 44' <br />4° 46'' <br />`-101.85 <br />•40° : <br />146.19 <br />2° 27, <br />2°-57, <br />3° 55'. <br />4°.54' <br />-102,06 <br />42° <br />139-52 <br />20 34a <br />.3° 05,.. <br />4° 07 <br />5008 <br />:I62.29 <br />449: <br />: 133147; <br />2141 ' <br />3° 13'49 <br />18' <br />5° 22' <br />102.53 <br />46° <br />127:97-, <br />2° 48':` <br />3°.21' <br />4� 29, <br />5°_36' <br />102:-76 <br />.48° <br />122.92 <br />20 55' <br />30 29'. <br />4049' <br />5° 50' <br />103:00 , <br />5�° <br />118.31 ... <br />' 3° 02' <br />3° 38' <br />40.51, .. <br />6° 04 <br />103.24 <br />52° <br />° <br />114.06, . <br />r: .3°.09' . <br />3° 46' <br />5° 02' <br />'6° 17' <br />103.54 <br />54 <br />110.11 <br />.30 16'• <br />3° 54' , <br />' '5° 13' <br />6° 31 <br />103': 84 <br />56°.. <br />106.56 <br />.3° 22' . <br />4° 02'.' <br />50 23'.. <br />'6° 44' <br />104-14 <br />580 <br />103.14. ' <br />30 29' <br />4° 10' <br />° 34' <br />5 <br />- 6 ° 57 <br />1 0 4:43 <br />•600 <br />IOO.00 <br />30 35' <br />4° 18': <br />51' 44' <br />_ <br />.7°.-I1' <br />104-72.. <br />­ . - - I IX <br />CURVE FORMULAS <br />T= K tanI R= T cot. Z I chord=. <br />T -- 50 tan 2 I Chord def. <br />_ Sin.- D _ _ R 50 _R_ Y <br />3 _ <br />D = 50 Sin- 2_D No. chords = I <br />R E= R ex. sec a I D <br />1 <br />go tan i I 3 <br />Sin. z D T 'E = T tan } I Tan. def. = 2 chord def. <br />The' square sof any .distance, divided by twice the _radius, will equal <br />,the distance from. tangent, to curve, very nearly. <br />-To find'angl'e for- a given distance and 'deflection. - <br />Rule -1 Multiply the given distance by .01745 (def. for i° f0r•i ft. <br />-see Table -II:); and-divide'given deflection by the product. <br />Rule 2: , Multiply given deflection by 57.3, and'divide the product by <br />,the -given distance. <br />To find deflection fora giveniangle and distance.' Multiply the angle <br />by :01745, and the'product by the distance. <br />GENERAL DATA <br />'RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />'base. "Add -quotient to base for hypotenuse. " <br />-Given 'Base loo, Alt. lo.102=200'=.5:.I0'0+-5=1oo.5 hyp. <br />Given Hyp. ioo, Alt.,25.252=200=3.125.'100=3:125=96.875=Base. <br />Error in first' example, .602; in last, .045• <br />-To find -Tons of Rail in one'mile of track: multiply weight per yard <br />by - II, and -divide by 7.' <br />.. .- LEVELING. The -correction for'curvature and refraction; -in' feet <br />'and:decimals.of feet is equal to 0.574d2,'where d is the distance in miles. <br />The correction for curvature alone is closely, ;d2. The combined cor- <br />rection is negative. <br />._ PROBABLE -ERROR. If d1, d2, ds, etc. are the discrepancies of various <br />-results-from-the mean, and if Ed2=the sum of the squares of these differ- <br />ences'and n=the number of observations, then the probable error of the <br />mean= Ede. <br />='46745 <br />N n.(471) . <br />SOLAR EPHEMERIS. Attention iscalledto the Solar Ephemeris for <br />.the current -year, published -by Keuffel & -Esser Co., and furnished upon <br />request'. This handy booklet, 38x6 in., has -about 190 -pages of data -very <br />useful to the Surveyor; such as the adjustments of -transits, levels and solar <br />attachments; directions and, -tables, for determining• themeridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />-magnetic declination; arithmetic constants, etc. <br />TABLE IV. -Minutes. in Decimals of a Degree. <br />11 <br />.0167 <br />111' <br />:1833' <br />211 <br />:3500 <br />311' <br />.5167 <br />41F <br />.6833 <br />511 <br />.8500 <br />2 <br />:0333. <br />12 <br />.2000 <br />22 <br />-.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />- .8667 <br />.3 <br />:.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 . <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833_ <br />4` <br />.0667. <br />14 <br />.2333 <br />.24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />" 5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000: <br />16 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />.9333 <br />7 <br />:1167,. <br />17, <br />.2833 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.9500 <br />8 <br />.1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />58 <br />.9667 <br />' 9: <br />.1500 <br />19 <br />.3167 <br />29' <br />.4833 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />'.9833 <br />1:10 -. <br />..1667 <br />20 <br />:3333 <br />1 30 <br />.5000 <br />40 <br />.6667' <br />50 <br />.8333 <br />60 <br />1.0000 <br />- -. TABLE V. -Inches in Decimals of a Foot. . <br />1-16 3-32 Y. 3-16 Y4 546 � % % % ?� <br />0833 .70668 2;00 I .30333 -4167 I .b000 I, .5833 .6667 I .7900 I .8333 I .9167 <br />