Laserfiche WebLink
y � , j•� fir <br />TRIGONOMETRIC FORMULfE Iw. <br />$ B B �: <br />c a c a c <br />s j C a <br />f <br />A b ftCAb CA <br />Right Triangle 4 r Oblique Triangles <br />—Solution of Right Triangles <br />For Angle A, sin'=" l�` , cos = � tan = b cot = a , sec cosec = c <br />Given ' Required <br />a, b A, B"c tan A = b = cot B, c = a2 —+b2 = a 1 { as <br />} a z <br />5 Ang1 <br />ar c <br />A, B,I b <br />sin A = e = cos B, b = � (o+a) (c—a) = e � 1— u a <br />}tl <br />t <br />Aa <br />B "b, Jc <br />B=90'=A; b.= a cots, c= a <br />i ' <br />� <br />sin A. <br />f A, b <br />B, a,'c <br />B= 90°=A, a= b tan A, c= b <br />`` cos A. <br />A, c <br />B, a, b <br />B = 90°—A, a = e sin A, b = c cos A, <br />Solution <br />of Oblique Triangles <br />i Given <br />A, B, a <br />Required <br />b, c, C <br />,a sin B in <br />b = ' C = 180°—(A + B), c = <br />sin A sin A <br />A, a, b <br />B, e, CC <br />b sin A a sin C <br />= 180°—(A + B), c = <br />sin A <br />a, b, C <br />. A, B, e <br />A f B=180°— C, tan (A—B)= (a -b) tan (A+B) <br />ci + b , <br />a sin C <br />� c= <br />sin A <br />b e <br />A, B C <br />s=a+b �c 1 <br />— ,ein �A= <br />N(s--b)(s—c) <br />2 be , <br />sinzB=a2(� )— <br />,C=180°(AiB) <br />{ a, b, e ' <br />Area <br />s _ 2 , area = s (s—a (s—) (s—o) <br />1 <br />A, b, c <br />Area <br />b e sin A <br />area. = <br />2' <br />{, <br />A, B, C,a <br />Area <br />�j a$ sin B sin C <br />area = <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e Cosine ofthe vertical angle. Thus: slope distance =319.4ft. <br />a�stat'e <br />Vert. angle=5' 101. From Table, Page IX. cos 51 101= <br />I ,oQe <br />e <br />y .9%9. Horizontal distance=319.4X.9959=318.09 ft. <br />la Horizontal distance also =Slone distance minus slope <br />ve • distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ring result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />When the rise is known, the hori00ontal distance is approximately:—tbe slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />MADE IN U. 8. A. <br />.KwR"91Ff�A7•�'iiliYlP4Si713"�� <br />