Laserfiche WebLink
Z l 7� <br />_ �-!"'• r'S ( �C i. ? G�TRIGONOMETRIC FORMULfE 7_ <br />�� Z 70 �C�2.�s',. bt- r X2•.7 B ; <br />B <br />'Z- <br />.3 :r_-4- m.4- c t""c a a o a <br />-z <br />r_.... C <br />�g0Z - A b C ��6 C <br />Right Triangle Oblique Triangles <br />:�ga �; ��%� 3 Solution of Right Triangles <br />sin a, b a b c c <br />For Angle A, = cos= c , tan= T, cot = a , sec = b, cosec = a <br />�� jvii 0 Given Required 2 a <br />/ vliY p p -r-= �p f; a, b, A,B,c' tanA=b=cotB,c= as } s=a 1 I a <br />a- - - las <br />_ -! �' �' \Q•2$ a, o A; B, b' -.sinA --� -cos B,b-�(c+a)(c a)=c�l-oa <br />, d, a -B, b, c . B=90°=A, b = a GotA, c= sin A. <br />A, b. B, a, c :B = 90* -A, a = b tan. A, c = b <br />cos A. <br />Q <br />` ✓ °° ' b 0' J % _`[, 1 P• A, c' B, a, b ' B = 90°-A, a = c sinA, b = c cos A, <br />Solution of Oblique Triangles <br />170---J 0 Given Required <br />{0 11 t4 A B,a b c,,C b=asin B C=180°-(A+B),c=asin C <br />_j sin ' . sin A <br />cp <br />o- - 1 G'so b iin A ° a sin C <br />o S -a . /rS' A, a,' b B, c, C sin B= d ,C = 180 -(A (B), c - sin A <br />Ga, b, C d, B, c A+B=1800- C, tan z (A -B)= (a -b) tan s (A +B) <br />F6 a sin C S" <br />sin A <br />Tg al b -z 4, c A; B, C s=a F 2+c,sin;A= V(s- b)(c-c <br />'�\\ C`�Jy� sinaB=�Y(s-aa(� c ,C=180°-{A+B) <br />i, a�b�c <br />(s -a s- (s- <br />�j�� <br />ZS' c Area s= 2 , area = sc <br />6 h <br />A, b, c Area area =basin <br />�Z S es -,5; 5-0 as sin B sin C y, 10 i <br />�S A, B, C, a Area area '_ <br />2 sin A. <br />T, -S f S'� , 9 C> Z - REDUCTION TO HORIZONTAL <br />¢ O Z I Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Staoce Vert. angle=51101. From Table, Page IX. cos 5'101= <br />9959. Horizontal distance=319.4X•9959=318.09 ft. <br />e cope �distance ttimest(lcco ine oflvertcal angle). With slope <br />W ththe <br />same figures as in the preceding example, the follow - <br />S -7 % C G <br />r Horizontal distance ing result is obtained. Cosine 50 10f=.9959.1—.9959=.0041. <br />j <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />0 O ante less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />v Z - slope distance=302.6 ft: Horizontal distance=302.6— 14 X 14 =302 —0 ft. <br />— 2 X 302.6 <br />SI O MADE IN U. a. A. <br />