Laserfiche WebLink
TRIGONOMETRIC FORMULA <br />1T3 B B <br />44 c. a c a c <br />r A rJ A / a <br />Gr b C b C <br />Right Triangle <br />Oblique Triangles <br />;..' 'Solution of Right Triangles <br />For Angle A. <br />a, b a b c a <br />sn = <br />i <br />cos = <br />e ' c tan= b , cot = a , sec = b , cosec = <br />Given <br />+' a,b <br />Required <br />A,B,c <br />a <br />tan A=a—b=cotB,c= a2+32=a 1+ a2 <br />J <br />�. i . • a, c <br />A, "B;: b <br />sin A = o = cos B, b = \/(c+a) (c—a) = c 1— a' <br />0 <br />A, w <br />B, b, c. <br />B=90°—A, b-= a cot A, c= a " <br />sin A. <br />A, b <br />{ <br />B,, c <br />b <br />B = 90°=A, a = b tan A, c = <br />i <br />r <br />cos A. <br />A, c <br />B, a, b <br />B = 90°—A, a = c sin A, b = e cos A, <br />1 Solution of Oblique Triangles <br />Given <br />A, B, a <br />Required <br />b, c, C <br />b=as in B <br />' C = 180°—(A + B), c = asin C <br />sin, A - sin A <br />A;' a,, b <br />B, c, C <br />b sin A <br />sin B = , C = 180°—(A + B), c = <br />a sin A <br />' a, b, C <br />d, B, c <br />A -{-B=180 — C, tan , (A—B)= (a—b) tan $ (A+B) <br />a + b ' <br />a sin C <br />} <br />c= <br />sin A <br />a, b, a <br />A, B; C <br />s=a+b +0, ,in 1A'=�1(s—b)s—c <br />2 V be '. <br />sinzB=-,I(s—a)(s—c ,C=180°—(A+B) '. <br />V ac <br />;.. <br />a, b, c <br />Area <br />a+b+c <br />S= 2 ,area = s (s—a S—F) (s --C) <br />�r <br />A, b, c <br />Area <br />b c sin A <br />area = <br />2" <br />e(, A, B, C; a <br />Area <br />aQ sin B sin C <br />area = • 2 sin A <br />REDUCTION TO HORIZONTAL <br />' <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />j a�5ta�pe <br />Vert. angle=50 lot. From Table, Page IX. cos 5° 101= <br />$� ope <br />9959. Horizontal distance=319.4X.9959=318.09 ft. <br />M <br />a Horizontal distance also=Slope distance minus slope <br />Arg1e <br />)' Ve . <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />ing result is obtained. Cosine 51 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. <br />Horizontal distance=302.6— 14 X 14 =302.6—O.'32=302.28 ft, <br />— <br />2 X 302.6 _ <br />- <br />WADE IN U. 8. A. <br />