Laserfiche WebLink
J <br />I <br />"I <br />� <br />C <br />s-yD <br />b <br />,S 'r6KmP1 <br />,Z -L/-e <br />I <br />'L <br />y\6 or:S <br />o: <br />b <br />r <br />"og6' <br />S c d <br />Y <br />5-2 <br />n <br />P 1 6 <br />DIS <br />' � 26 <br />A/04 rq Z14D <br />0ZX <br />k- �:Z�b <br />4 <br />Q. <br />o <br />J <br />�A� <br />f <br />- <br />,(r?pr/��j•-jr/�yL-.p(,}�0 <br />CURVE TABLES,— <br />- Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />xE to any other radius maybe found nearly enough, by dividing theTan. <br />Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />ivide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />ivide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />Ext. of twice the given angle divided by the radius of a P curve will <br />the Nat. Tan. or Nat. Ex. Sec. . <br />EXAMPLE. <br />Wanted a Curve with an Ext, of about 12 ft. Angle <br />of Intersection or I. P.=230 20' to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />120.87 =12 =10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23° 20'=1183.1 <br />1183.1=10 =118.31. <br />Correction for A. 23° 20' for a-10° Cur. =0.16 <br />118.31-}-0.16 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang.23°20'=23.33°=10=2.3333=L. C. <br />2°1912'=def. for sta. 5421. P.=sta. 542+72 <br />V 4912'= " (( " } 50 Tan. = 1 .18.47 <br />7° 1912'= cc it a <br />9°491,'= " " 543 543 B. C.=sta. 541+53.53 <br />+50 <br />110 40'--, " " " 543+ L. C.— 2 .33.33 <br />86:86 1 E. C.=Sta. 543+86.86- <br />100 —53-53 = 46.47 X 3'(def. <br />43-1-56.86100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.) =139.41'= <br />2° 1912'=def. for sta. 542. <br />Def, for 50 ft. =2° 30' for a 10° Curve. <br />Def. for 36.86 ft. =1° 50}' for a 10' Curves <br />-h <br />