Laserfiche WebLink
TRIGONOMETRIC FORMULAE <br />B B <br />a C <br />a a <br />A A A <br />f b C . b <br />Right Triangle Oblique Triangles <br />Solution, of Right Triangles <br />For Angle A. sin=. cosCos= tan = a cot = b sec cosec <br />a <br />'Giyen Required <br />2 <br />a,b A, B,e tanA cotB, c N/_a_2_+_7T2= a T <br />a, oAt B, b sin A= a= cos B, b= \,/'?7c+ a) —(o—a) 0 <br />a <br />A, a, B, b, e B=90°—A, b = a cot A, 0= <br />-sin A. <br />A, b B, a, e B=90*—A,a = btan A,c= - <br />cos A. <br />A, a B, a, b I B =90*—A, a = e sin A, b = e cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B a sin C <br />A, B, a b, e, C- b C =180'—(4 + B), e = — <br />sin A ' sin A <br />'B b� sin Aa sin C <br />A, = C sin a , 0'= 180'—(A + B) , sin A <br />a, b.:C A, B, -c A+B=180*— C, tan 1(4—B)= (a—b) tan (A+B)ab' <br />2 <br />a sin C + <br />sin A <br />a, b, a A, B, C 8=a+b+ sin'A= <br />2 be <br />sin'2B= 8-_—)(s_),C=180---(A+B) <br />N a 0 <br />a+b+c <br />a, b, a Area S=v's�(,—a s- <br />2 ,area = <br />A, b, o Areaarea = b c sin A <br />2 <br />­trl �1� a2 sin B sin C <br />A, A C, a Area area = - <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />'oee cosine of the vertical angle. Thus: slope distance =319.4ft. <br />A� z Vert. angle =5' 101. From Table, Page IX. cos 50 101= <br />..9959. Horizontal distance=319.4X.9959=318.09 ft. <br />Slop b:Horizontal distance also =Slor)e distance minus slope <br />distance times (1 -cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 51 101=.9959.1-.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately: -the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6- 14 X 14 ==6-o.32=302.28 ft. <br />2 X 302.6 <br />MADE IN V. S. A. <br />